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GENERAL INTRODUCTION 

For the past decade, workers in the Trahanovsky research group have been 

studying the gas-phase thermal decomposition of simple organic molecules as model 

systems of various features of coal structure. The hydrocarbon tetralin, the simplest 

hydroaromatic compound, has been studied as a model of this important structural 

feature of coal. Previous studies on the decomposition of tetralin have shown that 

tetralin decomposes to produce the dehydrogenation products 1,2-dihydronaphthalene 

and naphthalene, the ethylene-loss products benzocyclobutene and styrene, and other 

products such as indene and o-allyltoluene in smaller amounts. Pyrolysis studies in the 

literature using conventional heating techniques produced primarily dehydrogenation 

products, while in laser-induced decomposition and shock tube experiments ethylene 

loss predominated. It has been suggested that catalytic dehydrogenation is occurring 

using the conventional pyrolysis techniques. Our purpose has been to clarify these 

discrepancies and to determine to what extent, if any, heterogeneous surface catalysis is 

involved in the decomposition of tetralin. Additionally, we have been interested in the 

mechanism of tetralin decomposition and have designed several model compounds to 

probe the viability of various mechanistic pathways. The five papers in this dissertation 

describe our studies of tetralin decomposition and related model systems using the 

techniques of laser-induced decomposition, flash vacuum pyrolysis (FVP), and flow 

pyrolysis. 

In paper 1, studies of the gas-phase thermal decomposition of tetralin itself are 

presented. This paper is part of a collaborative project with Professor Edward S. Yeung 

and the experimental work involving laser-induced decomposition is part of the Ph.D. 

dissertation of Jianzhong Zhu (Iowa State University, 1989). Paper 2 contains the 
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results of the decomposition of two systems related to tetralin, ketone 3-benzocyclohept-

enone and sulfone 1.3.4.5-tetrahydro-2-benzothiepin-2.2-dioxide. In papers 3 and 4, the 

FVP of bis(o-allylbenzyl) oxalate and 1,4-diphenylbutane, respectively, are described. 

Paper 5 concerns the FVP of o-allyltoluene, a primary product in tetralin decomposition. 

Explanation of Dissertation Format 

This dissertation consists of five complete papers in the style suitable for publica­

tion in Journals published by the American Chemical Society. As such, each section has 

its own numbering system and reference section following the text. Detailed analytical 

data are contained in an appendix following each section. The research described in the 

results and experimental sections was done by the author unless otherwise indicated. 

Paper 1 is the result of a collaborative project as described above. The material in paper 1 

that is part of the Ph.D. dissertation of Jianzhong Zhu (Iowa State University, 1989) is 

indicated with a footnote. A general summary follows the final paper. 
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PAPER 1. THE GAS-PHASE THERMAL DECOMPOSITION 

OF TETRALm 
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INTRODUCTION 

Our recent research efforts have been directed toward understanding the 

gas-phase thermal chemistry of tetralin (1). In previous work, 1 has been used as a hy­

drogen-donor solvent for coal liquefaction processes 1 and, as the simplest hydroaro-

matic compound, has been studied as a model of this important structural feature of 

coal.2 The gas-phase chemistry of 1 at elevated temperatures has been examined under 

static, flow, and vacuum pyrolysis conditions,3.4 through sensitized laser-induced ther­

mal decomposition,^'® and in single-pulse shock tube experiments.^ The major products 

of tetralin thermal decomposition (Scheme I) include primary products 1,2-dihydro-

naphthalene (2), benzocyclobutene (3), and o-allyltoluene (4). Secondary products, 

naphthalene (5) from 2, styrene (6) from 3, 2-methylindan (7)8 from 4, and indene (8) 

primarily from 7, have been identified along with various minor products. 

Analysis of the complex tetralin product mixtures is simplified by treating the 

"hydrogen-loss" or dehydrogenation products 1,2-dihydronaphthalene (2) and naphtha-

Scheme I 

3 6 
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lene (5) together. Similarly, benzocyclobutene (3) and styrene (6) are also considered as 

a group and referred to as "ethylene-loss" products. The ratio of dehydrogenation to 

ethylene loss will be used to evaluate tetralin pyrolysis mixtures. 

Gas-phase pyrolysis^ of 1 has been reported to give primarily dehydrogenation, 

while laser-induced decomposition^ and single-pulse shock tube studies^ gave primarily 

ethylene loss. It has been suggested that surface catalytic effects have influenced the py­

rolysis results.In this paper, we report our reexamination of the thermal decomposi­

tion of 1 under both laser-induced and pyrolysis conditions. 

In our experiments, the laser-sensitized decomposition of 1 produced primarily 

dehydrogenation. These results are at variance with those previously reported;^ how­

ever, our gas-phase pyrolysis results confirm that the lowest energy unimolecular 

decomposition reaction of 1 is ethylene loss. We show that the excess dehydrogenation 

observed Is not the result of a surface catalytic effect. We believe a bimolecular reaction 

sequence produces excess dehydrogenation under some conditions. 



www.manaraa.com

6 

RESULTS 

Primary Pathways in Tetralin Decomposition 

Laser-induced decomposition^ 

We have studied the laser-induced decomposition of tetralin (1) under reaction 

conditions and analytical procedures that were chosen to match closely those reported 

earlier.^ Three types of laser-induced decomposition experiments were performed: direct 

multiphoton dissociation (MPD).IO sensitized thermal decomposition by pulsed IR 

laser, ̂  1 sensitized thermal decomposition by continuous wave (cw) IR laser. 

In the MPD of 1 (Table I), ethylene loss to form benzocyclobutene (3) and styrene 

(6) is clearly the major reaction pathway. This result is in agreement with the previous 

study. S 

The laser-induced sensitized pyrolysis of 1 has also been examined. In our exper­

iments, no part of the cell felt warm to the touch even at the highest laser powers used 

Table I. Products and dehydrogenation to ethylene loss ratio from MPD of tetralin 
(1) 

yield, % c 

pulses 

conversion, 
% d 

ratio 
(2+5) 
(3+6) 2 5 3 6 4 

other 

prods. 

950 1.3 0.45 25.1 4.4 54.1 11.0 — 5.4 

2812 2.3 0.61 26.0 8.9 48.2 9.0 7.5 0.4 

^ MPD conditions: laser energy = 1.6 J pulse"^, v = 944.2 cm'^, cell = 10- x 2-cm (id), 

1 = 0.325 torr. ^ Amounts determined by GC with a known quantity of biphenyl added 

as standard. Moles of product divided by total moles of products. One minus moles of 

recovered starting material divided by moles of starting material used. 
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SO that reactions on hot surfaces can be neglected. No decomposition products were 

found when the reaction mixture was left in the cell for 28 hours without laser irradia­

tion. 

A representative selection of the results of the pulsed laser sensitized decomposi­

tion of 1 is shown in Table II. The pulse energies for SFg and SiF4 sensitization cannot 

be compared directly, since the absorption coefficients of the sensitizers are quite differ­

ent. Regardless of the sensitizer, at low excitation energies and low conversions, 

dehydrogenation is the dominant reaction. At higher pulse energies, the ratio of dehy-

drogenation to ethylene loss is ca. 1. This is in contrast to earlier reports,^ where 

ethylene loss was found to be the major dissociation channel. No fluorlnated 

hydrocarbons were found in the GCMS analysis indicating the sensitizer acts only as a 

heat-transfer agent. 

The results of cw laser-induced thermal decomposition is shown in Table III. 

Invariably, the major products are associated with dehydrogenation. Longer reaction 

times are required with SIF4 to achieve similar conversions because of the difference in 

absorption coefficients for SIF^ and SFg. As expected, substantial conversion to 

secondaiy products (5 and 8) occurs when the reaction yields are high. The two studies 

involving SFg show that energy density, and not just total energy deposited, is 

important to the extent of reaction and the "maximum temperature", as was pointed 

out in the previous work.5b jvjo fluorinated hydrocarbons were found in the GCMS 

analysis indicating the sensitizer acts only as a heat-transfer agent in tetralln decom­

position. 

To assess the contributions of surface reactions to the overall decomposition pro­

cess, we studied the dependence of the absolute yields of products on the size and shape 

of the sample cell at a fixed input laser power of 9 W. Under these conditions, the major 
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Table II. Products and dehydrogenation to ethylene loss ratio from sensitized pulsed laser-induced decomposition 
of tetralin (1) 

yield, % ^ 

laser energy, 

J pulse" ̂  pulses 

sensitizer 

(P, torr) 

conversion, 
% c 

ratio 
(2+5) 
(3+6) 2 5 3 6 4 8 

other 

prods. 

0.04 3420 SFe (3) d 0.1 >30 75.8 24.2 — — — — 

0.26 5 SF6 (3) d 0.7 1.0 19.1 22.7 14.9 24.5 12.4 1.6 4.8 

0.09 2000 SiF4 (6) e 0.4 >20 63.4 36.5 trace trace — — 0.1 

0.11 2500 SiF4 (6) e 3.8 0.99 49.7 trace 50.3 — — — 

® See Table I. footnote fa. ^ See Table I, footnote c. ^ See Table I, footnote d. ̂  Laser-induced pyrotysis conditions: cell 
= 10- X 2-cm (id), I = 0.325 torr. ® Laser-induced pyrolysis conditions: cell = 5- x 2-cm (id), 1 = 0.325 torr. 
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Table III. Products and dehydrogenation to ethylene loss ratio from sensitized cw laser-induced decomposition of 
tetralin (1) 

yield. % ^ 

laser 

power, W time 

sensitizer 

(P, torr) 

conversion, 
% d 

ratio 
(2+5) 
(3+6) 2 5 3 6 4 8 

other 

prods. 

5.0 12 h SiF4 (6) 2.1 >20 100 trace trace — — — 

6.6 5 min SF6 (3) 1.1 5.8 70.6 14.6 14.7 — 0.1 

14.5 1 min SF6 (3) 58.2 1.7 3.1 55.5 1.8 31.9 7.6 0.5 — 

^ Laser-induced pyrolysis conditions: cell = 5- x 2-cm (id), 1 = 0.325 torr. ^ See Table I, footnote b. ^ See Table I, 
footnote c. ^ See Table I, footnote d. 
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reaction products are 2 and B. For cylindrical cells of length (cm) x internal diameter 

(cm) of 4 X 3.8, 4 x 2.8, 2 x 2.8, and 1 x 2.8, the measured formation rates (10"12 mol s'l) 

for 2 plus 5 are 121, 52, 1.9, and 0.21, respectively. 

Deuterium labeling studies were done to provide additional insight into the 

mechanism of cw laser sensitized dehydrogenation. In these experiments, the total con­

version was kept low to avoid secondary pyrolysis products. Dehydrogenation of 1 was 

the main reaction observed. Two types of studies were performed. In the first series of 

experiments, the deuterium distribution in 2 was determined for the pyrolysis of 

l,1.4,4-d4-tetralin. The relative amounts of do, di, d2, dg, and d4 in 2 were found to be 

2.0%, 0.8%, 10.9%, 80.2%, and 6.2%, respectively. These distributions are comparable to 

those obtained in the pulsed laser sensitized pyrolysis of 1, l,4,4-d4-tetralin.^ 

In a second set of experiments, the deuterium distribution in the hydrogen gas 

formed during the pyrolysis of 1:1 mixtures of 1 and di2-l were measured. The relative 

amounts of H2. HD, and D2 were found to be 53:35:12 at laser power 8.6 W with a 3 min 

irradiation time. These results are also consistent with those reported earlier. ̂  

To assess the importance of hydrogen atom chain reactions, we studied the effect 

of potential chain terminators on the cw pyrolysis of 1. Table IV shows sets of experi­

ments involving the addition of potential chain terminators. Ideally, the species added 

should be in large excess; however, the maximum temperature may vary due to a 

change in the effective thermal conductivity of the gas. Conversion was maintained 

low enough to avoid secondary pyrolysis reactions yet sufficiently high to allow reliable 

analysis of the products. 

Table IV shows that the addition of toluene as a potential chain terminator to 

the pyrolysis mixture slightly lowered the fraction of dehydrogenation products. There 

is a noticeable decrease in the total conversion that is consistent with a decrease in tem-
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Table IV. Products and dehydrogenation to ethylene loss ratio from sensitized cw laser-induced decomposition of 
tetralin (1) in the presence of hydrogen atom chain terminators 

yield, % ^ 

chain terminator 

(P. torr) time (s) 

conversion, 
% d 

ratio 
(2+5) 
(3+6) 2 5 3 6 4 8 

other 

prods. 

none (—) 120 2.7 2.1 56.6 6.6 19.2 11.0 4.8 1.8 — 

toluene (1.0) 120 0.9 1.4 53.5 4.7 35.7 6.0 — — — 

HI (0.2) 60 0.8 3.9 70.0 9.2 11.2 9.2 — — 

HI (1.0) 60 1.0 2.3 70.0 trace 30.0 trace — — 

iodine (0.25) 60 0.2 73 50.7 44.0 1.3 — — — 3.6 e 

^ Laser-induced pyrolysis conditions: laser power = 9.0 W, cell = 4.0- x 3.5-cm (id), 1 = 0.325 torr, SFg = 6.0 torr. 
^ See Table I, footnote b. ^ See Table I, footnote c. ^ See Table I, footnote d. ® Two products with retention times longer 
than 5 whose structures were not determined, but are likely to be iodine substitution products. 
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perature of the heated gas due to the higher thermal conductivity of toluene. The simul­

taneous decrease in the transmission of laser light through the cell independently 

confirms this.^^ 

When HI is used as a potential chain terminator, Table IV shows that the total 

conversion decreases, presumably due to a decrease in reaction temperature. The contri­

bution of dehydrogenation to the overall reaction is however increased relative to 

ethylene loss. We found that deposits of I2 are visible on the cell walls after these 

pyrolysis experiments. Laser excitation of a mixture of HI and SFe alone did not 

produce any observable I2 deposits under similar conditions. 

Then I2 was used as a potential chain terminator and as a check to determine if 

the I2 produced in the HI experiments above had biased the results. Table IV shows that 

the amount of dehydrogenation increased markedly. This is likely due to an iodine atom 

induced dehydrogenation. The direct production of iodine atoms at room temperature 

by laser photolysis of I2 (45 mW, 576.601 nm, 20 minjl'^ did not produce any dissocia­

tion in 1. This is not unexpected since there should exist a reasonable energy barrier for 

the reaction of iodine atom with 1. 

We also studied the effect of potential hydrogen-atom assisted dissociation of 1. 

Hydrogen atoms can be produced either by room temperature laser photolysis or by cw 

laser sensitized reaction at high temperatures. Photolysis of HI at 308 nm produces 

visible deposits of I2 on the cell walls, indicating dissociation of HI to generate hydrogen 

atoms. A mixture of 1 (0.325 torr), SFg (6.0 torr) and HI (3.7 torr) was laser irradiated 

(308 nm, 147 mJ pulse" 3000 pulses) in the gas cell used in the laser sensitized 

experiments after quartz windows were installed. Only four product peaks were found by 

GCMS analysis, giving a total conversion of 1.4% of 1. These have m/e of 134 (30%), 136 
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(10%), 136 (10%), and 138 (50%), respectively. These clearly are hydrogen addition 

products of 1. 1,2-dihydronaphthalene (2) was not detected. 

We have also studied the reaction between hydrogen atoms and 1 at elevated 

temperatures (cw laser-sensitized reaction). Hexamethylethane decomposes to produce 

hydrogen atoms as em intermediate. Isobutene (6.5%) was identified when a mixture 

of hexamethylethane (2.0 torr) and SFs (6.0 torr) was irradiated by a cw laser (944.2 

cm"l, 5.0 W, 180 s), indicating that hydrogen atoms are indeed produced under these 

conditions. When hexamethylethane (2.0 torr) was copyrolyzed with 1 (0.30 torr), butyl-

benzene (m/e = 134) was the primary product (1.1%). Only a trace of 2 was found. In the 

absence of hexamethylethane, only a trace of 2 was found in the product analysis of the 

sensitized pyrolysis of 1 under identical conditions. 

Flash vacuum and flow pyrolysis 

The yields of key flash vacuum pyrolysis (FVP) products of tetralin (1) vary with 

experimental conditions. Product yields are not only effected by the oven temperature 

but other experimental conditions, such as system pressure and sample temperature, as 

well. 

In the FVP of 1 at 10'® torr, the ratio of 1,2-dihydronaphthalene (2) and naph­

thalene (5) to benzocyclobutene (3) and styrene (6) remains ca. 1 (0.90-1.03) from 850 to 

950 °C and finally drops to 0.73 at 1000 °C (Table V, Figure 1). On the other hand, when 

1 is pyrolyzed at 0.10 torr a distinct drop in the dehydrogenation to ethylene loss ratio, 

from 2.70 to 0.72 (Table VI, Figure 1), with increasing pyrolysis temperature is observed. 

In Figure 1, conversion was plotted rather than oven temperature because the former is 

a better indicator of the actual reaction temperature. 
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Table V. Total recovery of material, conversion, and dehydrogenation 
to ethylene loss ratio from FVP of tetralin (1) at 10'^ torr and 
various oven temperatures cub.c 

oven temp., 
°C 

recovery, 
% d 

conversion, 
% e 

ratio 
(2+5)/(3+6) 

850 90.0 4.8 0.90 

900 85.6 17.2 1.03 

950 80.4 34.4 0.92 

1000 76.2 65.4 0.73 

® FVP conditions: system pressure = 1 x 10"® torr, sample 
temperature = 0 °C. ^ See Table I, footnote b. Data represent 
the average of triplicate runs. ^ See Table A-I in the Appendix 
of Paper 1, this dissertation, for a more detailed analysis. 

Total moles of recovered material divided by moles of 
starting material used. ® Total moles of recovered material 
minus moles of recovered starting material divided by total 
moles of recovered material. 

The influence of sample temperature on the pyrolysis of 1 was also investigated 

at three sample temperatures from -30 °C to room temperature (900 °C, 10"® torr). 

These data are presented in Table VII and clearly show a low sample temperature results 

in lower conversion and less dehydrogenation relative to ethylene loss. 

The possibility that bimolecular or surface reactions were responsible for the 

above results lead to some additional experiments. To minimize collisions between hot 

tetralin molecules with each other and with the quartz surface of the oven, tetralin va­

por was mixed with a large amount of argon (ca. 4500:1 mole ratio of argon to tetralin). 

This mixture was introduced into an evacuated pyrolysis oven through a flow system 

(Figure 2). 
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Figure 1. The dehydrogenation to ethylene loss ratio vs. conversion at two system 
pressures (sample temperature, 0 °C) 

Table VI. Total recovery of material, conversion, and dehydro­
genation to ethylene loss ratio from FVP of tetralin (1) at 
0.10 torr and various oven temperatures ^,b,c 

oven temp., 
°C 

recovery. 
% d 

conversion, 
% e 

ratio 
(2+5)/(3+6) 

750 91.8 1.4 2.70 

800 92.0 3.7 1.41 

850 83.8 14.3 1.01 

900 85.2 34.3 0.72 

^ FVP conditions: system pressure = 0.10 torr. sample 
temperature = 0 °C. ^ See Table V, footnote b. ^ See Table 
A-II in the Appendix of Paper 1. this dissertation, for a 
more detailed analysis. ^ See Table V, footnote d. ® See 
Table V, footnote e. 
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Table vn. Total recovery of material, conversion, and dehydrogenation 
to ethylene loss ratio from FVP of tetralin (1) at 10"® torr and 
various sample temperatures 

sample temp., 
°C 

recovery, 
% d 

conversion, 
% e 

ratio 
(2+5)/(3+6) 

-30 85.2 13.4 0.39 

0 86.7 20.7 0.84 

KT 80.8 30.2 2.09 

^ FVP conditions: oven temperature = 900 °C, system pres­

sure = 1 X 10"® torr. ^ See Table V, footnote b. c See Table 

A-III in the Appendix of Paper 1, this dissertation, for a more 
detailed analysis. See Table V, footnote d. ® See Table V, 

footnote e. 

When 1 is pyrolyzed under flow conditions (Table VIII), the major products are 

benzocyclobutene (3) and styrene (6). In fact, ethylene loss exceeds dehydrogenation by 

a ratio of between 3 and 5 to 1, over a wide temperature and conversion range. 

Secondary Pathways in Tetralin Decomposition 

To develop a complete picture of tetralin thermal decomposition, it was necessary 

to examine the chemistry of some of the other products. o-Allyltoluene (4) is produced in 

the flow pyrolysis of tetralin (1) at 800 °C (Table VIII), along with the other initially 

formed products, 1,2-dihydronaphthalene (2), benzocyclobutene (3), and styrene (6). At 

higher temperatures, increasing amounts of styrene (6), 2-methylindan (7), indene (8). 

and naphthalene (5) are present. To clarify the origin of some to these secondar>' 

products, o-allyltoluene (4) and 1,2-dihydronaphthalene (2) were pyrolyzed separately. 
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When 4 Is pyrolyzed in the flow apparatus (Table IX), the major reaction observed 

is isomerization of 4 to 7. At higher temperatures. 7 is further converted to 8. 

Numerous other products are produced in smaller amounts, including 1, 2, 3, 5, and 6. 

Although small amounts of 3, 5, and 6 appear to be produced directly from 4 below 800 

°C, it Is likely that most of the 2, 3, 5, and 6 observed at higher temperatures result 

from secondary pyrolysis of 1. 

1,2-Dihydronaphthalene (2) was also pyrolyzed under conditions similar to those 

used for the flow pyrolysis of 1 and 4. These results are summarized in Table X. As 

expected, the major product is 5. Even at high temperatures, products other than 5 

constitute only a small percentage of the pyrolysate. 
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Three-way Valve 

Bypass Line 

Pressure/Vacuum 
Gauge 

Sample Inlet 
Gas Inlet 

Flow Meter 
Needle Valve 

Three-way Valve 

Sample Chamber Flow Control Assembly 
(12 L) 

To Roughing Pump 
(-10"^ torr) 

Oven (600 - 1000 °C) 

Trap (-196 °C) 

Figure 2. Schematic diagram of flow pyrolysis apparatus 



www.manaraa.com

Table vni. Products and recovered starting material and dehydrogenation to ethylene loss ratio from flow pyrolysis 
of tetralin (1) at various oven temperatures 

yield, % ^ 

oven temp., 

°C 

recovery, 
% d 

conversion, 
% e 

ratio 
(2+5) 
(3+6) 1 2 5 3 6 4 7 8 

other 

prods. 

800 89.0 1.5 0.40/ 98.5 0.4/ — 0.9 <0.1 0.2 — — — 

850 89.2 9.3 0.28 90.7 1.1 0.5 4.7 1.1 1.1 0.6 0.2 — 

900 93.4 22.7 0.22 77.3 1.7 1.4 9.9 4.6 1.9 1.7 1.0 0.39 

950 85.3 53.9 0.21 46.1 2.2 5.0 13.9 20.7 2.2 2.9 4.3 2.8 9 

^ Flow pyrolysis conditions: system pressure = 1 x 10"^ torr, flow rate = 24 mL min"^ (Ar), residence time = 0.31 s. 
^ See Table V, footnote b. Data at 850 °C represent the average of six runs. ^ Moles of product divided by total moles of 
recovered material. See Table V, footnote d. ® See Table V, footnote e. /At low conversion, the peak for 2 is on the tail 
of the large peak for 1, enhancing the apparent amount of 2. 9 See Table A-IV in the Appendix of Paper 1, this 
dissertation, for a more detailed analysis. 



www.manaraa.com

20 

Table IX. Products and recovered starting material from flow pyrolysis of o-allyltolu­
ene (4) at various oven temperatures 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 950 °C 

o-allyltoluene (4) ^ 94.0 83.6 71.0 30.9 12.7 5.8 

2-methylindan (7) 2.1 8.4 17.8 34.8 28.7 13.1 

indene (8) 0.7 1.4 2.0 9.7 23.9 39.9 

tetralin (1) 0.3 0.8 2.0 5.2 5.4 3.9 

1,2-dihydronaphthalene (2) 0.6 1.4 0.5 1.0 0.8 0.5 

naphthalene (5) ^ 0.1 0.3 0.1 0.9 1.1 2.5 

benzocyclobutene (3) — 0.2 0.5 1.4 2.8 2.2 

styrene (6) — — — 0.4 2.3 5.7 

other products 2.4 e 3.9 e 

CO CD 

15.9 e 22.4 e 26.8 E 

recovery / 84.0 81.2 88.3 74.0 80.1 69.8 

conversion 9 6.0 16.4 29.0 69.1 87.3 94.2 

"^Flow pyrolysis conditions: system pressure = 1 x 10"2 torr, flow rate = 24 mL min'l 

(Ar), residence time = 0.31 s. ^ See Table V. footnote fa. ^See Table VIII, footnote c. 

Starting material (yield, %): o-allyltoluene (98.1), m/p-allyltoluene (1.6), naphthalene 
(0.3). ^ See Table A-V in the Appendix of Paper 1, this dissertation, for a more detailed 

analysis. /See Table V, footnote d. 9 See Table V, footnote e. 
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Table X. Products and recovered starting material from flow pyrolysis of 1.2-dihy-
dronaphthalene (2) at various oven temperatures 

yield, % ^ 

entry 800 °C 850 °C 900 °C 

1,2-dihydronaphthalene (2) ^ 89.9 73.2 31.1 

naphthalene (5) 8.7 23.4 61.7 

other products 1.4 e 3.4 e 7.1 e 

recovery f 80.1 90.3 83.1 

conversion 9 10.1 26.8 68.9 

o- Flow pyrolysis conditions: system pressure = 1 x 10"^ torr, flow rate = 22 mL 
min'l (Ar), residence time = 0.31 s. ^ See Table V. footnote b. ^ See Table VIII, footnote 

c. Starting material (yield, %): 1,2-dihydronaphthalene (99.7), tetralin (0.3). ® See 

Table A-VI in the Appendix of Paper 1, this dissertation, for a more detailed analysis. 

/See Table V, footnote d. 9 See Table V, footnote e. 
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DISCUSSION 

Dehydrogenation vs. Ethylene Loss in Tetralin Decomposition 

Laser-induced decomposition^ 

In the multiphoton dissociation (MPD) of tetralin (1), ethylene loss to form ben-

zocyclobutene (3) and styrene (6) is clearly the major reaction pathway (Table I). The 

results for the MPD of I in this work agree with those in the previous study.^ It Is diffi­

cult to compare the fluence of these MPD experiments with those used earlier but 

considering the beam properties and the optical arrangements, we believe they are com­

parable. Though we observe no indene (8) and more 1,2-dihydronaphthalene (2) Is ob­

served here than previously reported, the conclusion that ethylene loss Is the main 

decomposition channel in MPD is confirmed. 

In this work, the predominant reaction of 1 in the continuous wave (cw) and 

pulsed laser-induced sensitized decompositions (Table II. Table III) is dehydrogenation to 

form 1,2-dIhydronaphthalene (2) and naphthalene (5). These results are in disagree­

ment with the previous study, ̂  which found that ethylene loss was the main decom­

position reaction. Since the MPD results from the two studies agree, it is unlikely that 

the discrepancies In the pulsed laser sensitized experiments are due to dllTerences in the 

tetralin purity or analytical procedures used, nor do nonhomogeneous reactions 

provide a satisfactory explanation. 

In the pulsed laser decomposition of 1 shown In Table II, the amount and 

fraction of ethylene loss increases with laser energy. In the two SiF4 sensitized 

pyrolyses, the difference in laser powers is responsible for the results. Though 0.11 J 

does not seem too different from 0.09 J, our laser shows large pulse-to-pulse variations 
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at the maximum output range. Although the average energy per pulse is 0.11 J, there 

are individual pulses as high as 0.15 J throughout the experiment. It is the pulses with 

the highest power that dominate the pyrolysis process, since yields are exponentially 

dependent on temperature. The substantially increased yield at 0.11 J also confirms a 

higher reaction temperature. Unfortunately, we were not able to obtain still higher 

output levels from our laser at the SiF4 wavelength to observe a cleeir-cut cross-over of 

the two reaction channels. 

Tetralin decomposition sensitized by SiF4 or SFg based on cw IR laser excitation 

has not been reported previously. A major consideration is that one can control the 

power levels and the power densities much more reliably than with the corresponding 

pulsed lasers.^® One expects to find a steady-state temperature gradient starting at a 

high level at the center of the laser beam (due to cumulative absorption), dropping 

quickly outside the irradiated region, and eventually equilibrating to the cell walls along 

a slower temperature gradient than for the pulsed laser. The results in Table III show 

that the major decomposition reaction of 1 under cw laser-induced sensitized conditions 

is dehydrogenation. 

To assess the contributions of surface reactions to the overall decomposition pro­

cess, we studied the dependence of the absolute yields of products on the size and shape 

of the sample cell. The KBr windows in every case should contribute roughly the same 

amount of surface reactions since the contact areas as well as the distances from the 

hot gas column are comparable. In fact, since less depletion of laser light and less area 

for thermal conduction exist in the smallest cell, surface temperatures at the windows 

there should be the highest. The decomposition rates decrease substantially in the series 

of experiments from large to small cells indicating that surface reactions at the cell win­

dows cannot be important in the cw laser-induced decomposition. 
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As for the Pyrex cell walls, the first two absolute yields (4- x 3.8-cm (id) cell, 121 x 

10"^^ mol s"^; 4- x 2.8-cm (id) cell, 52 x 10"^^ mol s'^: Ri;R2 = 2:1) show a decrease in 

the rate of formation of 1,2-dihydronaphthalene (2) and naphthalene (5) (the only major 

products) that is better explained by the difference in the volume of gas heated (V = Ttr^h, 

Vi:V2 = (3.8)^:(2.8)^ = 2:1) than by the decrease in available surface area (S = 2jrrh, 

Si:S2 = 3.8:2.8 = 1:1). The Pyrex surface area decreased by a factor of four in the last 

three cells (4- x 2.8-cm (id) cell, 52 x lO"^^ mol s"^; 2- x 2.8-cm (id) cell, 1.9 x lO'l^ mol 

s'l; 1- X 2.8-cm (id) cell, 0.21 x lO'^^ mol s"l) but the yields decreased by a factor of 360. 

It has been shown that smaller cells provide shorter distances for heat con­

duction from the center of the cell to the cell walls. We confirmed that the smallest cell 

(1- X 2.8-cm) did feel hot to the touch during laser pyrolysis compared to the larger cells. 

Since the cell walls are close to room temperature, the heated gas column has a lower 

temperature in smaller cells for the same incident laser power and this accounts for the 

dramatic decrease in absolute rates in these experiments. One can therefore conclude 

that neither the Pyrex cell walls nor the KBr windows contribute to the 

dehydrogenation of 1 through surface reactions. 

Our deuterium labeling results indicate that 1,2-elimination is the primary mode 

(co. 80%) of dehydrogenation but that ca. 10% 1,4- and 10% 2,3-elimination are also in­

volved. However, it is not possible to conclude whether the loss of hydrogen from 1 in­

volves intermolecular processes (e.g., abstraction) or whether isotopic scrambling occurs 

after decomposition. 

The large amount of HD produced in the pyrolysis of a 1:1 mixture of 1 and 

d^^-1 indicates that at least 80% of the hydrogen is formed by intermolecular 

pathways. Previous workers^^ also studied the decomposition of deuterated tetralin 
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derivatives and concluded that the hydrogen loss was consistent with an 80% stepwise 

process. 

The observation of an excess of dehydrogenation products (2 and 5) over 

ethylene-loss products (3 and 6) at low temperatures in itself cannot confirm that the 

former is the unimolecular decomposition reaction with the lower energy barrier. It is 

possible that dehydrogenation products are formed as a result of radical chains, which 

magnify the contributions from that channel. We have already shown above that 

surface-catalyzed reactions are not important in the production of 2 and 5. The isotopic 

studies indicate that hydrogen atoms are formed during pyrolysis. Presumably these 

can cycle (by reaction with 1) to produce more dehydrogenation products. 

Although chain-induced dehydrogenation may be occurring under our 

laser-induced pyrolysis conditions, it is not clear why such chains should be more im­

portant here than in the previous work.^ In pulsed laser experiments, the hot zone 

quickly expands and is cooled by the surrounding gas to quench long chain processes. 

In cw laser experiments, gases in the heated zone migrate outwards and are also cooled 

by the surrounding gas. Although the temperature profiles are different in the two 

cases, the time periods involved for migration from the heated zone to the cold walls are 

quite similar. 

The Implication is that the earlier pulsed laser-sensitized study^ was performed 

at an effective temperature higher than either the pulsed or cw laser experiments 

reported here. The sensitizer is excited to high vibrational levels following multiphoton 

absorption (pulsed experiments). Since V -> V energy transfer to the reactant is highly 

favored (compared to V T), the calculated maximum temperature^^ for pulsed experi­

ments does not adequately describe the non-Boltzmann excitation of the reactants. 
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Flash vacuum and flow pyrolysls 

The interpretation of the results of the FVP of tetralin (1) at different system 

pressures and sample temperatures are not clear-cut. In the initial FVP of 1, there was 

a marked difference in the chemistry of the pyrolysis at 10" ̂  torr and 0.10 torr. 

Changing the system pressure results in different amounts of dehydrogenation relative 

to ethylene loss at comparable conversions. 

The system pressure is one of the factors that determines the residence time of 

sample molecules in the pyrolysis oven. However, a change in the residence time of 1 in 

the pyrolysis oven should have no effect on the relative amounts of dehydrogenation 

and ethylene loss at a given effective temperature if both of the pathways are unimolecu-

lar processes. If both 1,2-dihydronaphthalene (2) and benzocyclobutene (3) had been 

produced by the unimolecular decomposition of 1. the dehydrogenation to ethylene loss 

ratio would have been determined by the ratio of the rate constants for their formation. 

If this were the case, one might expect the curve representing the ratio of dehydrogena­

tion to ethylene loss (Figure 1) to show the same trend regardless of the system 

pressure. This is clearly not the case. At low conversion, there is a marked difference 

between the almost 3 to 1 excess of dehydrogenation to ethylene loss observed at 0.10 

torr and the 1 to 1 ratio observed at 10"^ torr. 

Ultimately, this leads to the conclusion that a substantial portion of either the 

dehydrogenation or the ethylene-loss products are not produced in an unimolecular 

gas-phase reaction of 1. However, it is difficult to imagine how surface catalytic effects or 

bimolecular reactions would effect ethylene loss. Only catalytic or bimolecular 

dehydrogenation remain as possible explanations of the variable results from the FVP of 

1 with different system pressures and sample temperatures. Catalytic dehydrogenation 

on the quartz surface should be favored under conditions that maximize surface contact 
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and minimize collisions between sample molecules, while bimolecular decomposition 

should be favored under conditions that increase the probability of collisions between 

sample molecules. 

Surface catalytic dehydrogenation would be minimized by short residence time 

at low system pressure (10"^ torr). This could explain the smaller amounts of dehydro­

genation products 1,2-dihydronaphthalene (2) and naphthalene (5) produced when 1 

was pyrolyzed at 10'^ torr (Table V, Figure 1) as compared to 0.10 torr (Table VI, Figure 

1). However, surface effects cannot explain the prevalence of dehydrogenation at high 

tetralin sample temperature (Table VII). Catalysis on the quartz surface should be most 

evident when collisions between tetralin molecules are at a minimum; i.e., when the tet­

ralin vapor pressure is low (at low sample temperature). Contrary to this explanation, 

Table VII shows that high tetralin vapor pressure (at high sample temperature) favors 

dehydrogenation. Surface catalytic dehydrogenation is also inconsistent with the 

results from laser pyrolysis, vide supra. 

A bimolecular reaction neatly explains the prevalence of dehydrogenation at high 

tetralin pressures (Table VII). The increased probability of collisions between sample 

molecules should favor a bimolecular reaction; therefore, more dehydrogenation and in­

creased conversion wUl result from the high tetralin pressure at high sample tempera­

tures. Rationalizing the system pressure effect with bimolecular dehydrogenation is less 

straightforward. The residence time could be insufficient for significant bimolecular col­

lisions to occur at low system pressure (10'® torr). At high system pressure (0.10 torr), 

bimolecular reactions are important at low temperature but the unimolecular 

gas-phase reaction of 1, i.e., ethylene loss, overcomes bimolecular dehydrogenation at 

higher temperatures, producing the change in the relative amounts of dehydrogenation 

to ethylene loss observed (Figure 1). 
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Flow pyrolysls of 1 was performed to eliminate both surface catalytic and bi-

molecular reactions and to determine the actual unimolecular decomposition products 

of 1. In the flow pyrolysis experiment, energy is transferred from the oven walls to the 

argon and then to the tetralin through collisions. Surface effects are minimized because 

wall to tetralin collisions should be minor. The high dilution reduces collisions between 

hot tetralin molecules and other tetralin molecules or reactive species from its' 

decomposition: therefore, bimolecular reactions should be minimized under these 

conditions. The experiments (Table VIII) show that ethylene loss to form 3 and 6 is the 

lowest energy gas-phase unimolecular decomposition reaction of 1. 

Thus, it is likely that a bimolecular dehydrogenation reaction is responsible for 

the excess production of 2 and S observed at low temperature and conversion under 

some FVP conditions and in the laser-induced decomposition of 1. The combined 

evidence from the laser-induced and flash vacuum pyrolysis experiments reported here 

is inconsistent with heterogeneous surface catalysis. 

Primary Pathways in Tetralin Decomposition 

We can propose two mechanisms for the bimolecular dehydrogenation of tetralin 

(1). The first is an autocatalytic intramolecular hydrogen atom transfer (Scheme II). The 

key step in the first proposed mechanism is the intermolecular transfer of a hydrogen 

atom from the benzylic position of 1 to a double bond conjugated to an aromatic ring. 

Unimolecular decomposition products or impurities, such as 1,2-dihydronaphthalene 

(2) and styrene (6), could initiate the process to produce radiceils 9 and 10, both of 

which undergo cleavage of a J3 hydrogen to regenerate 2 and 6, respectively. The 
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Scheme II 
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production of 2 would then be autocatalytic. The calculated ̂  ^ AH° for this hydrogen 

atom transfer reaction is between 31-34 kcal mol" 1. which is not unreasonable in this 

temperature range. Two other examples of this type of reaction are found in the dispro-

portionation of l,2-dihydronaphth£ilene (2)3,18e ^nd 9,lO-dihydroanthracene.3'19 

A second possible mechanism is the hydrogen atom chain in Scheme III. The hy­

drogen atom is sufficiently reactive to abstract either the a or J3 hydrogen from 1 to 

form the 1-tetryl (9) and 2-tetryl (11) radicals. Previous examples of this type of chain 

reaction have been observed in the decomposition of toluene^® and in the dispropor-

tionation of 23,18 ^t higher temperatures. 



www.manaraa.com

30 

Scheme III 
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There is some evidence for the presence of a hydrogen atom chain operating 

under the conditions of the experiments reported here. In the laser-induced pyrolysis of 

1 (Table rv), there was a small, though not dramatic, reduction in the relative portions 

of dehydrogenation to ethylene-loss products in the presence of toluene. However, ad­

dition of the chain terminators to the sample cell also reduces the temperature and 

complicates the analysis of these experiments. A substantial increase in the dehydro­

genation of 1 occurs in the presence of I2. This increase in the amount of 2 and 5 is 

consistent with either iodine atom initiated dissociation (I* + 1 -> 9 + HI) or competition 

with the recombination of tetryl radicals with hydrogen atoms (I2 + H* -> HI + I* or I» + 

9 HI + 2). 

On the other hand, the observation of only hydrogen addition products from the 

laser-induced decomposition of 1 in the presence of hydrogen atoms is reported in this 

paper. These results would seem to indicate that abstraction by hydrogen atom, 
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required for the chain decomposition, is not a favored process. In the room temperature 

photolysis of HI, the expected ipso addition of hydrogen atom to 1 leads to the 

formation of radical 12 (Scheme IV). Cleavage of 12 and subsequent trapping of the 

primary radical 13 by HI, leads to the formation of butylbenzene (14). Trapping of 

rad ica l  12  by  HI  would  l ead  to  1 .2 .3 ,4 ,4a ,5 ,6 ,8a-oc tahydronaphtha lene  (15) .  

l,2,3.4,4a.5,8,8a-octahydronaphthalene (16). and decalin (17). This scheme is consistent 

with the molecular weights of the observed products (one of m/e 134, two with m/e 136. 

and one with m/e 138). 

In the high temperature laser-induced decomposition of 1 in the presence of hex-

amethylethane. 14 was the major product observed. Little or no 2, formed from 

J3-hydrogen loss from 1-tetryl radical (9). was found in either laser experiment. The pre­

viously reported^ shock tube decomposition of 1 in the presence of hexamethylethane. 

however, resulted in increased dehydrogenation. The discrepancy between hydrogen 

atom addition to 1 in our laser studies, on the one hand, and abstraction in the shock 

Scheme IV 

H 
H 

1 12 13 14 

16 
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tube results, on the other, can be reconciled as follows. In the studies reported here, a 

large excess of hydrogen atoms was used, while in the shock tube experiments 1 was in 

excess. It is possible that, with a large excess of hydrogen atoms, any 2 produced by 

abstraction is consumed by the readdition of hydrogen atom to the double bond. 

Alternately, if hydrogen atom addition is reversible, a large excess of hydrogen atoms 

may be required to favor addition. 

Although the evidence is not overwhelming, we can state that hydrogen atom 

chains (Scheme III) are involved in tetralin decomposition under some conditions. We 

cannot, however, rule out the first bimolecular mechanism (Scheme II). It is possible 

that under some conditions both mechanisms operate, as was found to be the case for 

the disproportion of 2.22e 

In the flow pyrolysis of tetralin (1), there is a residual amount of dehydrogena-

tion so we must entertain the possibility of a unimolecular dehydrogenation pathway. 

The most likely intermediate is the diradical 18 (Scheme V) formed from breaking the 

benzylic carbon-carbon bond, the weakest bond in 1. Three possible reaction routes are 

possible for diradical 18. To produce a net hydrogen-loss product, cleavage of the J3-car-

bon-hydrogen bond of 18 is required. This would lead to the formation of o-allylbenzyl 

radical (19), which could close either to the kinetically favored 2-indanylmethyl radical 

(20) or the thermodynamically more stable 2-tetryl radical (11). The cyclization of 19 

should be reversible at these temperatures and products from 11 should predominate. 

The major product formed by cleavage of the J5 hydrogen of 11 is 2. To confirm this, we 

produced radical 19 by the pyrolysis of the bis oxalate ester of o-allylbenzyl alcohol.21 

When this oxalate is pyrolyzed, the major product is 1,2-dihydronaphthalene (2). 

A second reaction of diradical 18 is intramolecular disproportionation to form 

o-allyltoluene (4). This intramolecular hydrogen atom abstraction is likely to occur if 18 
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is formed. The product 4 was formed in the decomposition studies reported here. 

Additionally, 4 was also observed in the pyrolysis of 9-methylenespiro[3.5]nona-5,7-di-

ene (21),22 S-benzocycloheptenone (22),23 and 1.3.4,5-tetrahydro-2-benzothie-

SO. 

21 22 23 

pin-2,2-dioxide (23),23 model systems expected to produce 18. o-Allyltoluene (4) was 

also formed in room temperature photolysis of 22.23 

The third possible reaction path for diradical 18 is cleavage of the 

J3-carbon-carbon bond leading to the formation of o-xylylene (24) and ultimately to ben-

zocyclobutene (3). The cleavage of a carbon-carbon bond is thermodynamically more fa­

vorable than -hydrogen loss in normal alkyl radicals: however, geometric constraints 

required to form 24 and the resulting loss of aromaticity may make the carbon-carbon 

bond cleavage of 18 less favorable than in other systems. Additionally, the loss of cyclo-

hexene from cis- and trans-1,2,3,4,4a,9,9a,10-octahydroanthracene appears to be con­

certed.'^^ Although the loss of cyclohexene from these precursors may not be a good 

model for the loss of ethylene from tetralin (1), we must at least entertain the possibility 

that ethylene loss from 1 is concerted. 

None of the above model systems (21, 22, or 23) for the formation of diradical 

18, produces ethylene-loss products. If 18 is formed, clearly the loss of ethylene is not 

favorable. However, we cannot be certain that 18 is actually formed in the pyrolysis of 

21, 22, or 23; although, as noted above, the formation of 4 is consistent with the 

presence of this radical. The activation parameters for the loss of ethylene from 1 do not 

preclude concerted ethylene loss. We do not believe there is enough evidence to make a 

definitive conclusion on this matter. 
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Secondary Pathways in Tetralin Decomposition 

We have also examined the decomposition of the primary pyrolysis products of 

tetralin (1). The primary ethylene-loss product, benzocyclobutene (3), decomposes to 

styrene (6). This transformation has been studied previously.^'^ Nothing unusual was 

found in the pyrolysis of 1.2-dihydronaphthalene (2). Naphthalene (5) was the major 

product (Table X) with only minor amounts of other products observed. 

In the flow pyrolysis of o-allyltoluene (4), isomerlzation to 2-methylindan (7) was 

observed (Table IX). Loss of a methyl from 7 results in the formation of indene (8). 

Although there are numerous minor products (<2%), 4, 7, and 8 constitute ca. 60% of 

the product mixture even at 950 °C. At this temperature, over 90% of the o-allyltoluene 

(4) has been converted to products. Clearly 4 is the primary source of 8 produced in the 

pyrolysis of 1. 

We have proposed^S an intramolecular hydrogen atom transfer to account for 

the transformation of 4 to 7. Transfer of the benzylic hydrogen of 4 to the terminal end 

of the double bond would form the diradlcal 25, which would close to form 7 (Scheme 

VI). Transfer of the benzylic hydrogen to the internal end of the double bond of 4 would 

form diradical 18. Closure of this radical should form tetralin (1), which is the highest 

yield minor product found. Many of the minor products formed in the pyrolysis of 4 

probably result from the secondary pyrolysis of 1. This can be seen by examining the 

data in Table IX. The amount of 1 produced increases steadily up to 850 "C, levels off at 

900 °C and drops at 950 °C. At the same time the major decomposition products of 1, 

benzocyclobutene (3) and styrene (6) are produced in substantial amounts only above 

850 °C. 
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Scheme VI 
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CONCLUSION 

In this paper, we present new results on the thermal decomposition of tetralin (1) 

under sensitized laser-Induced pyrolysis conditions under both cw and pulsed laser 

excitation. We have found dehydrogenation to predominate at low temperatures in these 

experiments. We have also examined the thermal chemistry of 1 under FVP and flow 

pyrolysis conditions. Our flow experiments show that the lowest energy unimolecular 

gas-phase decomposition channel for 1 is ethylene loss. A bimolecular dehydrogenation 

reaction, possibly a hydrogen atom chain, is responsible for greater amounts of 

hydrogen-loss products observed under some conditions in the decomposition of 1. In 

none of our pyrolysis experiments, whether laser-induced or under standard pyrolysis 

conditions, did we find any evidence of heterogeneous catalytic reactions on surfaces. We 

can conclude that MPD favors the lowest energy unimolecular decomposition channel 

while laser-sensitized pyrolysis (cw or pulsed) can lead to homogenous bimolecular 

reactions as well. 

We have observed the facile transformation of o-allyltoluene (4) to 2-methylindan 

(7), which we propose occurs through an intramolecular hydrogen atom transfer from 

the benzylic methyl group to the double bond of 4. Loss of a methyl from 7 leads to the 

formation of indene (8). We have identified the transformation 4 to 7 to 8 as the major 

source of 8 in the gas-phase thermal decomposition of 1. 
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EXPERIMENTAL SECTION 

General Procedures 

Apparatus 

Laser-induced pyrolysis® The experimental arrangements were very simi­

lar for the three types of laser studies: infrared pulsed laser sensitized pyrolysis, infrared 

pulsed laser multiphoton dissociation (MPD), infrared continuous wave (cw) laser 

sensitized pyrolysis. A schematic diagram of the experimental arrangement for the 

pulsed laser sensitized pyrolysis is shown in Figure 3. A grating-tuned TEA CO2 laser 

(Lumonics, Model 102) was used as the pulsed laser. The laser beam was defined with a 

0.8-cm pinhole. The intensity profile was tophat shaped with variations of 30% across 

the beam. The laser pulse had a 150-ns peak and a 2-|is tail. The unattenuated energy of 

the laser beam was 0.11 J pulse"^ at 1027.4 cm'^. and 0.26 J pulse"^ at 944.2 cm"l and 

933.0 cm'l. The pulse-to-pulse variation was ± 15% at 1027.4 cm"l and ± 5% at the 

other two lines. The pulsed laser beam was attenuated by a 10-cm cell filled with 0-10 

torr of SF6 or SiF4 depending on the wavelength used. The laser beam was unfocused. 

Around 10% of the laser energy was directed into a power meter (Laser Precision, Model 

RJ7200) for monitoring the laser energy continually during the pyrolysis. The incident 

laser energy (Iq) was measured with no pyrolysis cell in the beam path. 

For MPD, a BaF2 lens with a 6.0-cm focal length was placed before the pyrolysis 

cell and no pinhole or attenuation cell was used. The laser beam was focused in the cen­

ter of the pyrolysis cell. The P(20) line at 944.2 cm'l was used with a square beam of 1.6 

cm and an energy of 1.6 J pulse" The energy density at the focal point was not evalu-
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Pyrolysis 
Cell 

Attenuation 
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Figure 3. Schematic diagram of the experimental arrangement for the sensitized 
pulsed laser-induced pyrolysis (P = pinhole, BS = beam splitter, PM = power 
meter) 

ated. The pulsed laser was operated at 0.4 Hz for all experiments. Higher repetition rates 

produce poor pulse-to pulse reproducibility. 

The cw laser sensitized pyrolysis was performed with a Molectron C250 grat­

ing-tuned CO2 laser. The experimental setup was similar to the pulsed laser sensitized 

pyrolysis shown in Figure 3, except that no attenuation cell was used. The laser power 

was controlled directly by the laser operating current. The laser beam was near 

Gaussian in profile with power levels stable to ± 1% throughout the experiment. The 

maximum power obtained was 18 W at 933.0 cm"l, 21 W at 944.2 cm"! and 5 W at 

1027.4 cm'!. The laser power was measured by a power meter (Coherent, 1 W = 1 mV). 

For both the pulsed zmd cw lasers, the wavelength was calibrated by a spectrum 

analyzer (Optical Engineering). The transmission was about 20-40% in a 4- x 3.8-cm (id) 

cell with 6.0 torr of SFg. Higher laser powers resulted in a greater fraction of the light 

transmitted. A chart recorder (Fisher 5000) was used to monitor the laser power 

throughout the experiment. 

Several Pyrex sample cells fitted with KBr windows at normal incidence were 

used as the pyrolysis cell. MPD experiments were carried out in a 10- x 2-cm (id), 4- x 

3.8-cm (id), or 4- x 3.5-cm (id) cell. The windows were attached with a 5-min epoxy 



www.manaraa.com

40 

(Devcon). A 2.8-cm (id) Pyrex cell with an adjustable length of 1, 2, or 4 cm was used to 

study the surface effects. All the cells were fitted with two stopcocks and two O-ring 

Joints, one connected to a 2- x 0.2-cm (id) glass sampling tube and the other connected 

to the vacuum line. In the kinetic study with cyclopropane, the sampling tube was 3 x 

0.7 cm (id) and fitted with a gas-sampling septum. 

A dye laser (Spectra-Physics, Model 380) pumped by an argon ion laser was used 

for l2 excitation at 576.601 nm. The wavelength was monitored by a wavemeter 

(Burleigh). The l2 absorption was confirmed by the strong reddish fluorescence from a 

second (low pressure) l2 cell that was placed in the laser path during Irradiation. 

In the UV photolysis experiments, HI was excited by an exclmer laser (Lambda 

Physik) at 308 nm. The laser beam was focused with a BaF2 lens (focal length =15 cm). 

For both HI and I2 photolysis experiments, the 4- x 3.8-cm (id) cell with two quartz win­

dows was used. 

Flash vacuum pyrolysis Flash vacuum pyrolysis (FVP) was performed on 

the previously described apparatus.27 

Flow pyrolysis A flow apparatus (Figure 2) was designed to fit the commer­

cially available pyrolysis apparatus^ ̂  in place of the usual sample head. The flow appa­

ratus has two parts: a sample chamber and a flow control assembly. The sample 

chamber consists of a 12-L Pyrex glassblowers' flask (Ace 6870-24) fitted with a Pyrex to 

stainless steel ISO size NW 40 vacuum adapter (VWR AC50900NW040). Attached to the 

side of the flask are two 90° Teflon needle valve stopcocks (Ace 8193-04) with 14/20 irmer 

Joints. One of the stopcocks functions as a gas inlet, the other as a sample inlet. The 

entire assembly was enclosed in a wooden box with clear Lexan sides. 

The flow control assembly was constructed with stainless steel parts and consists 

of a Bourdon type pressure/vacuum gauge (Omega PGS-25B-30V/15) connected to 
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swltchable bypass or flow control lines between two three-way ball valves (Witey 

SS-43XS4). The flow control line consists of a needle valve (Nupro SS-SS4) connected to 

a flow meter (Air Products E21-A-41504 with flow tube E29-M-150MM3). All connections 

are with tubing and compression fittings (Swagelok). The pressure/vacuum gauge, 

three-way ball valves, needle valve and flow meter were mounted on a stainless steel 

panel. 

The flow control assembly is connected to the sample chamber with stainless 

steel tubing, a Swagelok to NPT fitting and a NPT to ISO size NW 40 vacuum 

adapter (VWR 55009-155). The connection from the flow control assembly to the pyroly-

sis apparatus Is Identical to the one with the sample chamber except for the addition of a 

Pyrex to stainless steel ISO size NW 40 vacuum adapter (VWR AC50900NW040) fitted 

with a Pyrex 40/35 outer joint. 

Methods and materials 

CapUlary gas chromatographic analysis of condensable pyrolysls products was 

performed using a Hewlett-Packard HP5840A gas chromatograph equipped with a 30-m 

(0.25-|im film thickness) DB-1701 capillary column (J & W Scientific) using nitrogen 

carrier gas and flame ionization detector. GCMS analysis was performed on a Finnegan 

4000 mass spectrometer. H2, HD, and D2 isotopic analysis was performed on a Kratos 

MS50 mass spectrometer. HPLC was done on an ISCO Model 2350 Instrument equipped 

with a Model 2360 Gradient Programmer and a Spectra-Physics SP4270 Integrator 

using a semlprep Cig reversed-phase column (25 cm, 10 mm diameter, 5 jam particle 

size). NMR spectra were recorded on a NIcolet NT-300 spectrometer. Chemical shifts 

are reported in ppm (8) relative to tetramethylsilane. All materials were commercially 

available and used as received, except as indicated below. 
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Tetralln (1) purified by the method of Bass. 26 as an alternate purification, 1 was 

washed with H2SO4 until the acid layer was no longer colored and was successively 

washed with deionized HgO. 10% Na2C03 and deionized H2O and then dried with 

MgS04. Finally, 1 was fractionally distilled from CaH2. 

Sulfuric acid washed 1 was purified by HPLC in small portions as needed. 250 |iL 

of a 25% w/v solution of 1 in HPLC grade CH3OH was injected and a solvent of 90% 

CH3OH and 10% H2O with a flow rate of 3.0 mL min'^ was used. Fractions were col­

lected with the UV detector at 254 nm. The combined fractions were diluted with satu­

rated NaCl solution (ca. ^ total volume) and deionized H2O (ca. ^ total volume) and 

extracted with fractionally distilled certified grade hexanes. The combined hexanes 

fractions were washed with deionized H2O, dried with MgS04 and the solvent was re­

moved in vacuo. HPLC purified 1 was stored under Ar at -40 °C until use. Concentrated 

samples (50 mg mL'l) analyzed by GC indicate the purity of the sample exceeds 99.8%. 

1,2-Dlhydronaphthalene (2) was purified by HPLC as described for 1. 

Benzocyclobutene (3) Benzocyclobutene (3 )  was prepared by FVp27 of 

a-chloro-o-xylene at 790 °C and 0.010 torr.28 Ir NMR (CDCI3) 8 7.2-7.0 (m. 4H), 3.19 

(s, 4 H) [lit.5b Ir NMR (CDCI3) S 7.01 (m, 4 H). 3.11 (s. 4 H)]; GCMS (70 eV) m/e (% base 

peak) 104 (100), 103 (54.0), 78 (49.6), 51 (39.1) [lit.^b MS (50 eV) m/e (% base peak) 104 

(100), 103 (53). 78 (59). 51 (52)]. 

o-Allyltoluene (4) o-Allyltoluene (4 )  was prepared by the previously 

published procedure^Q and was purified by HPLC as described for 1. ^H NMR (CDCI3) Ô 

7.12 (s, 4 H), 5.94 (qt. Jq = 10.3 Hz, Jt = 6.4 Hz, 1 H). 5.04 (dq. Jd = 10.1 Hz, Jq = 1.6 Hz. 1 

H), 4.98 (dq. Jd = 17.0 Hz. Jq = 1.7 Hz. 1 H), 3.36 (dt, Jd = 6.3 Hz. Jt = 1.6 Hz. 1 H). 2.28 

(s. 3 H) [lit.5b 1h NMR (CCI4) S 6.94 (s. 4 H), 5.79 (qt. Jq = 11.3 Hz, Jt = 6.5 Hz. 1 H). 4.93 

(m, 1 H), 4.79 (dq. Jd = 11.3 Hz. Jq = 2.1 Hz. 1 H). 3.24 (dt, Jd = 6.0 Hz, Jt = 1.8 Hz, 2 H), 
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2.20 (S. 3H)]: GCMS (70 eV) m/e (% base peak) 132 (77.5), 117 (100). 115 (42.3). 91 (35.6). 

65 (31.6) [lit.5b MS (50 eV) m/e 132 (parent). 117 (base)]. 

2-Methyl-lH-indene 2-Methyl-lH-indene was synthesized using the litera­

ture preparation.30 Ir NMR (CDCI3) ô 7.38-7.04 (m. 4 H). 6.47 (s, 1 H), 3.29 (s. 2 H). 2.18 

(s. 3 H) IUt.31 1h NMR (CDCI3) 6 7.11-7.05 (m. 4 H). 6.50 (s. 1 H). 3.30 (s. 2 H). 2.18 (s, 3 

H)]; GCMS (70 eV) m/e (% base peak) 130 (100), 129 (61.1), 128 (30.1). 115 (76.1) [lit.30 

MS (70 eV) m/e (% base peak) 130 (100). 115 (70)1. 

2-Methylindan (7) 2-Methylindan was prepared according to the litera-

ture.30 Ir NMR (CDCI3) Ô 7.27-7.05 (m. 4 H). 3.10-2.97 (m. 2 H). 2.58-2.47 (m. 3 H). 1.14 

(d. J= 6.2 Hz. 3 H) [lit.30 Ir NMR (CDCI3) Ô 7.24-7.04 (m. 4 H). 3.12-2.92 (m. 2 H). 2.60-

2.40 (m. 3 H). 1.13 (d. J = 6 Hz. 3 H)]; GCMS (70 eV) m/e (% base peak) 132 (63.8). 117 

(100). 115 (30.8) [Ut.32 MS (70 eV) m/e 132 (parent), 117 (base)]. 

3-Methyl-IH-lndene 3-Methyl-lH-lndene was prepared according to the 

literature procedure.^O Ir NMR (CDCI3) S 7.49-7.17 (m. 4 H). 6.21-6.18 (m. 1 H), 3.33-

3.29 (m, 2 H), 2.18-2.15 (m, 3 H) (lit.30 Ir NMR (CDCI3) 5 7.45-7.05 (m, 4 H), 6.18 (s. 1 

H), 3.30 (s. 2 H), 2.18 (s, 3 H)]; GCMS (70 eV) m/e (% base peak) 130 (100). 129 (75.6). 128 

(43.5). 115 (76.7) [Ut.30 MS (70 eV) m/e (% base peak) 130 (34). 115 (64). 77 (41)]. 

1-Methylindan 1-Methylindan was prepared according to the previously 

published procedure.30 1R NMR (CDCI3) 8 7.24-7.10 (m. 4 H). 3.25-3.10 (m. 1 H). 2.97-

2.75 (m. 2 H). 2.36-2.23 (m. 1 H). 1.67-1.52 (m, IH). 1,29 (d, J =6.6. 3 H) [lit.30 1R NMR 

(CDCI3) 5 7.32-7.08 (m. 4 H). 3.28-2.78 (m. 3 H). 2.40-1.52 (m. 2 H). 1.28 (d. J = 7 Hz. 3 

H)]; GCMS (70 eV) m/e (% base peak) 132 (27.8). 117 (100). 115 (19.1) [lit.33 MS (70 eV) 

m/e (% base peak) 132 (24). 131 (11). 128 (5). 117 (100). 115 (24). 91 (13). 77 (7). 65 (8). 63 

(9)1. 
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Laser-induced pyxolysis® Samples were prepared in a turbomolecular 

pump (Pfeiffer, TPU 40) vacuum system, with grease-free stopcocks and O-ring Joint 

connections. The base pressure was less than 10'® torr. The pyrolysis cell and the vac­

uum manifold were heated by a heat gun to clean the walls before the sample was pre­

pared. Pressure was measured by a manometer (MKS 221 AHS-F) with 10-torr full scale. 

The sample preparation was the same in both cw and pulsed laser sensitized py­

rolyses. Initially, freshly purified 1, stored in a side arm of the vacuum manifold, was 

frozen with liquid N2 and the air was evacuated. Sensitizer was then expanded into the 

sample cell and was frozen into the sample tube. Next, the stopcock to the sample tube 

was closed and the cell was evacuated. Then 1 was allowed to expand into the cell until 

the pressure was 0.325 torr. The sensitizer was then warmed up to expand back into the 

cell as the stopcock was opened. Five minutes was allowed for equilibration of the gases 

before irradiation. When an additional gas was required for the sample mixtures, it was 

usually Introduced after the sensitizer and was condensed in the sample tube before 1 

was introduced. For MPD experiments, the cell contains only 0.325 torr of 1. 

The pyrolysis cell was irradiated immediately after sample preparation. The reac­

tion time was 1-2 h for a pulsed laser experiment and 1-5 min for a cw laser experiment. 

After the reaction, the condensable materials were frozen into the sample tube. Then the 

sample tube was warmed up with a Diy lce/2-propanol bath and the sensitizer was 

evacuated. The tube was then detached from the cell. 50 |iL of hexanes (HPLC grade) 

with biphenyl added as an internal standard was introduced along the wall with a 50-|iL 

syringe (Hamilton). GC analysis was done immediately. The non-condensable gas mix­

tures were taken to a mass spectrometer for Hg. HD. and D2 analysis in a continuous 

flow system, as needed. 
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After the experiment was complete, the pyrolysis cell was cleaned with HNO3, 

H2O and acetone. Following the I2. HI, or deuterium experiments, the KBr windows 

were repoUshed. 

The infrared spectra of 1 and SFg for the laser experiments were taken by FTIR 

with 0.3 cm"l resolution with a 4- x 3.8-cm (id) cell. Both 1 (0.325 torr) and SFg (6.0 

torr) were at the same pressure as in the pyrolysis experiment. 

Flash vacuum pyrolysis The pyrolysis oven was equilibrated at the desired 

temperature before pyrolysis. A weighed sample (ca. 10-25 mg) was placed in a 50-mL 

24/40 round-bottom flask and connected to the pyrolysis apparatus fitted with a right 

angle sample adapter (40/35 outer 90° to 24/40 Inner). The entire system was flushed 

with N2 and the sample frozen with liquid N2. The system was evacuated with the 

roughing pump to ca. 0.1 torr and the pyrolysis trap was frozen with liquid N2. If the 

diffusion pump was used, the system was then evacuated to 10"® torr. The sample was 

warmed to the desired temperature with an appropriate bath. A sample temperature of 0 

°C was maintained with an ice/water bath for all pyrolysis experiments except for those 

at -30 °C (Dry Ice/CaCl2/H20) and room temperature (water). After the pyrolysis was 

complete, the system was filled with N2 and the trap was allowed to warm to near room 

temperature. 1.0 mL of ca. 2 mg mL'^ solution of biphenyl in CH2CI2 and an additional 

1.0 mL of CH2CI2 was added to the trap. The trap was thoroughly rinsed with the solu­

tion, which was Immediately analyzed by GC. 

Flow pyrolysis The flow pyrolysis apparatus (Figure 2) was filled with Ar 

and evacuated several times and then allowed to pump down at least 12 h (flow assembly 

on bypass). A weighed sample in a 5-mL 14/20 round-bottom flask flushed with Ar was 

attached to the sample inlet, frozen with liquid N2 and the sample inlet was opened. 

After the system had returned to the original pressure (30-60 min), the sample inlet was 
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closed and the sample allowed to warm to room temperature. The sample was refrozen 

with liquid Ng and opened to the system for an additional 15-30 min. The sample cham­

ber was isolated from the flow assembly and pyrolysis apparatus. The sample inlet was 

opened and the sample was allowed to warm to room temperature. No liquid sample 

remained in the flask. The sample chamber was filled with Ar to atmospheric pressure 

through the gas inlet and the gas mixture was allowed to equilibrate for 15 min. The 

pyrolysis trap was cooled with liquid N2. The flow of gas mixture into the pyrolysis 

apparatus was maintained at a fixed rate of 20-25 mL min" 1 (Ar/1 atm) until the sample 

chamber was evacuated to ca. ^ atmospheric pressure. The sample chamber and flow 

control assembly were isolated from the pyrolysis apparatus that was then filled with 

N2. After the trap had warmed to near room temperature, 0.5 mL biphenyl in CH2CI2 

(ca. 2 mg mL"l) and an additional 0.5 mL CH2CI2 was added to the trap. The trap was 

thoroughly rinsed with the solution, which was immediately analyzed by GC. A clean 

trap was fitted to the pyrolysis apparatus and the entire assembly was filled with Ar and 

evacuated several times. The apparatus was allowed to pump down at least 12 h (flow 

assembly on bypass) before repeat use. 

Product analysis The oven for capillary GC was initially programmed at 80 

°C for 10 min, heated at 3 °C min'l until the temperature reached 242 °C and held for 1 

min. For the laser-induced decomposition samples, the oven was initially programmed 

at 80 °C for 10 min, heated at 3 °C min'^ for 15 min and then 15 °C min"^ until the 

temperature reached 250 °C. All compounds eluted before 35 min. 

For the FVP and flow pyrolysis samples, 1 jiL of CH2CI2 solution was injected 

while 2 pL of a hexanes solution was used to analyze the laser-induced decomposition 

samples. Results agreed among injections within ± 3%. For FVP and flow pyrolysis ex­

periments, the major products (1, 2, 3, 4, 5, 6, 8, toluene, ethylbenzene, o-xylene, and 
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o-ethyltoluene) were corrected for fid response to a known amount of added standard 

(biphenyl). Percentages reported are for moles of product relative to total moles of recov­

ered material. In the laser experiments, the major products (2, 3, 4, 5. 6, and 8) were 

corrected for fid response relative to 1. Conversion was calculated from a known 

amount of added standard (biphenyl). Percentages reported are for moles of product rel­

ative to total moles of products. The reproducibility for the overall experiment was 

within ± 5%. Major products were identified by GC retention time of authentic samples 

(1, 2, 3, 4, 5, 6, 7, 8. toluene, ethylbenzene, o-xylene, o-ethyltoluene, 1-methylindan, 

2-methyl-lH-indene, and 3-methyl- IH-indene) and GCMS. The molecular weight of mi­

nor products was determined by GCMS. 

Isotopic analyses for laser studies were done by GCMS. The responses of H2 and 

D2 were almost the same in a 1 to 1 H2:D2 mixture. HD was assumed to produce the 

same response. 
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APPENDIX 1 

SUPPLEMENTARY DATA TABLES 

Table A-I. Products and recovered starting material, total recovery of material, 
and conversion from the FVP of tetralin (1) at 10'^ torr and various 
oven temperatures 

yield, % ^ 

entry RT" 850 °C 900 °C 950 °C 1000 °C 

toluene — — — 0.10 0.65 

TA — — — — 
e 

ethylbenzene — — 0.03 0.09 0.29 

m/p-xylene — — — 0.02 0.08 

o-xylene — — 0.12 0.37 1.46 

styrene (6) — 0.41 2.09 5.80 18.62 

benzocyclobutene (3) — 1.67 4.52 7.73 9.40 

allylbenzene — — — — 0.04 

propylbenzene — — — 0.04 

o-ethyltoluene — — 0.02 0.07 0.12 

o-methylstyrene — — 0.11 0.32 0.75 

m/p-allyltoluene — — — — 0.10 

o-allyltoluene (4) — 0.47 1.15 1.66 1.54 

indene (8) — 0.15 1.08 3.00 8.02 

2-methylindan (7) 0.14 0.59 1.10 1.21 

1-methylindan — — 0.06 0.06 

Table A-l continues on next page 
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Table A-I. Continued 

yield, % ^ 

entry 850 °C 900 °C 950 °C 1000 °C 

TD-130 ICioHiol — — 0.04 0.12 0.37 

TE-130 [CioHioI — — — 0.03 — 

TF-130 [CioHioI — — 0.04 0.07 0.07 

0- ( 1 - propenyl) toluene — — 0.13 0.32 0.50 

TH-130 [CioHiol — — 0.05 0.08 0.09 

TI-132 IC10H12I — — — 0.05 0.08 

TJ-132 [C10H12I — — — 0.06 0.09 

tetralin (1) 99.85 95.19 82.76 65.64 34.63 

2-methyl- IH-Indene — 0.04 0.19 0.35 0.44 

TK-130 [CioHiol — 0.07 0.28 0.46 0.51 

1,2-dihydronaphthalene (2) 0.06 1.36 4.13 5.37 4.24 

TL-128 [CioHsl — — 0.03 0.04 0.14 

1,4-dihydronaphthalene 0.05 — — 0.02 — 

TM e e e 
— — 

naphthalene (5) 0.05 0.51 2.66 7.04 16.27 

TN e e e e 
— 

TO-148 ICllHiel — — — 0.02 0.03 

2-methylnaphthalene — — — — 0.09 

1 -methylnaphthalene — — — — 0.07 

recovery f 92.90 90.02 85.62 80.37 76.25 

conversion 9 d 4.81 17.24 34.36 65.37 

Table A-I footnote on next page 
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Table A-I. Footnote 

FVP conditions; system pressure = 1 x 10"^ torr, sample temperature = 0 °C. 

^ Amounts determined by GC with a known quantity of biphenyl added as standard. 

Data represent the average of triplicate runs. Products identified by comparison with 

authentic samples or those that could be identified by retention time and GCMS are 

indicated by name. Products that were identified by GCMS only are indicated by code: 

XY-rmn, where 'X' corresponds to the system studied (T = pyxolysis of 1), T to the in­
dividual unknown product (A, B, C, etc.), and 'mm' to the nominal mass. ^ Moles of 

product divided by total moles of recovered material. ^ Starting material purity assay. 

® Unidentified product which constitutes <0.05% total area by GC. /Total moles of re­
covered material divided by moles of starting material used. 9 Total moles of recovered 

material minus moles of recovered starting material divided by total moles of recovered 

material. 
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Table A-n. Products and recovered starting material, total recovery of material, 
and conversion from the FVP of tetralin (1) at 0.10 torr and various 
oven temperatures 

yield, % ^ 

entry 750 °C 800 °C 850 °C 900 °C 

toluene — — — 0.18 

ethylbenzene — — — 0.12 

o-xylene — — 0.07 0.42 

styrene (6) 0.06 0.24 1.71 7.34 

benzocyclobutene (3) 0.28 1.08 3.87 8.10 

o-ethyltoluene — — — 0.08 

o-methylstyrene — — 0.08 0.34 

butylbenzene — — 0.03 0.05 

o-allyltoluene (4) 0.08 0.31 0.85 1.32 

indene (8) 0.02 0.10 0.65 2.45 

2-methylindan (7) — 0.12 0.65 1.24 

l-methylindan — — — 0.07 

TD-130 [CioHiol — — 0.05 0.13 

TF-130 [CioHiol — — — 0.03 

o-{l-propenyl)toluene — — 0.10 0.26 

TH-130 [CioHiol — — — 0.07 

TI-132 [CioHi2l — — — 0.03 

TJ-132 [C10H12I — — — 0.06 

tetralin (1) 98.63 96,31 85.69 65.73 

2-methyl- IH-indene — — 0.33 0.45 

TK-130 [CioHiol — — 0.27 0.38 

Table A-II continues on next page 



www.manaraa.com

55 

Table A-n. Continued 

yield, % ^ 

entry 750 °C 800 °C 850 "C 900 °C 

1,2-dihydronaphthalene (2) 0.68 1.44 3.56 4.73 

TL-128 [CioHsl — — — 0.08 

1,4-dihydronaphthalene — — — — 

TM e e e 
— 

naphthalene (5) 0.24 0.42 2.09 6.34 

TN e e 
— 

e 

recovery f 91.78 91.98 83.75 85.21 

conversion 9 1.37 3.69 14.31 34.27 

^ FVP conditions: system pressure = 0.10 torr, sample temperature = 0 °C. ^ See 

Table A-I, footnote b. ^ See Table A-I for sample purity assay. ^ See Table A-I, footnote 

c. ® Unidentified product which constitutes <0.10% total area by GC. f See Table A-I, 
footnote/. 9 See Table A-I, footnote g. 
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Table A-m. Products and recovered starting material, total recovery of material, 
and conversion from the FVP of tetralin (1) at 10"^ torr and various 
sample temperatures 

yield, % ^ 

entry -30 "C 0 "C KT 

toluene — 0.08 0.13 

ethylbenzene — 0.05 0.10 

o-xylene — 0.18 0.32 

styrene (6) 1.76 3.04 3.31 

benzocyclobutene (3) 5.30 5.65 4.20 

o-ethyltoluene — — 0.11 

o-methylstyrene 0.06 0.14 0.32 

o-allyltoluene (4) 1.40 1.21 1.10 

indene (8) 0.77 1.29 2.41 

2-methylindan (7) 0.87 0.71 0.57 

1-methylindan 0.06 0.05 0.05 

TD-130 [CioHiol — 0.05 0.16 

TF-130 [CioHiol 0.03 0.08 

o-(l-propenyl)toluene 0.21 0.16 0.12 

TH-130 (CioHiol — 0.05 0.11 

tetralin (1) 86.62 79.29 69.84 

2-methyl- IH-indene — 0.34 0.60 

TK-130 [CioHioI 0.18 0.35 0.63 

1,2-dihydronaphthalene (2) 1.69 4.17 8.98 

TL-128 ICioHsl — — 0.12 

naphthalene (5) 1.06 3.15 6.75 

Table A-lII continues on next page 



www.manaraa.com

57 

Table A-in. Continued 

yield, % ^ 

entry- -30 °C 0 °C KT 

recovery ® 85.17 86.72 80.84 

conversion f 13.38 20.71 30.16 

^ FVP conditions: oven temperature = 900 °C. system pressure = 1 x 10"^ torr. ^ See 

Table A-I, footnote b. ^ See Table A-Il, footnote c. ^ See Table A-I, footnote c. ® See 

Table A-I, footnote /. /See Table A-I, footnote g. 
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Table A-IV. Products and recovered starting material, total recovery of material, 
and conversion from the flow pyrolysis of tetralin (1) at various oven 
temperatures 

yield, % d 

entry 805 °C 853 °C 905 °C 952 °C 

toluene — — — 0.12 

ethylbenzene — — — 0.13 

o-xylene — — 0.24 

styrene (6) 0.02 1.07 4.64 20.66 

benzocyclobutene (3) 0.89 4.73 9.92 13.94 

o-methylstyxene — — — 0.17 

o-allyltoluene (4) 0.23 1.07 1.92 2.21 

indene (8) — 0.21 1.02 4.32 

2-methylindan (7) — 0.60 1.69 2.86 

TD-130 [CioHiol — — — 0.52 

o-(l-propenyl)toluene — — 0.34 0.95 

TJ-132 (CioHi2l — — — 0.14 

3-methyl- IH-indene — — — 0.32 

tetralin (1) 98.49 00.70 77.34 46.08 

2-methyl- IH-indene — — — 0.19 

1,2-dihydronaphthalene (2) 0.36 1. LI 1.74 2.18 

naphthalene (5) — 0.52 1.40 4.97 

recovery ^ 88.96 89.18 93.44 85.31 

conversion / 1.51 9.30 22.66 53.92 

® Flow pyrolysis conditions: system pressure = 1 x 10"^ torr, flow rate = 24 mL 

min"l (Ar), residence time = 0.31 s. ^ See Table A-I, footnote b. Data at 850 °C 

represent the average of six runs. ^ See Table A-II, footnote c. See Table A-1, footnote 

c. ® See Table A-I, footnote f /See Table A-I, footnote g. 
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Table A-V. Products and recovered starting material, total recovery of material, 
and conversion from the flow pyrolysis of o-allyltoluene (4) at various 
oven temperatures 

yield, % ^ 

entry RT^ 700 °C 757 «C 796 °C 850 °C 900 °C 950 °C 

toluene — — — 0.17 0.26 0.81 1.06 

ethylbenzene — — — 0.08 0.36 1.09 1.17 

m/p-xylene 0.09 0.13 

o-xylene — — — 0.07 0.21 0.47 0.60 

styrene (6) — — — — 0.39 2.26 5.74 

benzocyclobutene (3) — — 0.15 0.48 1.36 2.79 2.17 

allylbenzene 0.15 0.07 

propylbenzene 0.09 0.08 

o-ethyltoluene — — —— 0.07 0.31 0.33 0.13 

o-methylstyrene — 0.15 0.21 0.44 1.60 2.47 3.09 

benzaldehyde — — — 0.09 0.20 0.19 0.16 

indan 0.16 0.38 

m/p-allyltoluene 1.63 1.57 1.38 1.37 1.35 0.92 0.51 

AA — — — 
e 

— — 

o-allyltoluene (4) 98.07 94.03 83.60 71.00 30.92 12.74 5.77 

indene (8) — 0.68 1.44 1.99 9.71 23.93 39.88 

2-methylindan (7) — 2.10 8.37 17.80 34.85 28.68 13.07 

1-methylindan — 0.17 0.62 1.31 1.86 1.30 0.57 

AB-132 [C10H12I — — — 0.14 0.29 0.30 

TD-130 [CioHiol — — — 0.40 1.74 4.26 

o-methylbenzaldehyde — 0.10 0.11 0.07 0.16 — — 

Table A-V continues on next page 
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Table A-V. Continued 

yield, % ^ 

entry Krd 700 °C 757 °C 796 °C 850 °C 900 °C 950 °C 

o-(l-propenyl)toluene — 0.16 0.79 1.91 6.35 7.92 5.86 

TH-130 [CioHiol 0.07 

TI-132 [C10H12I — — — — 0.27 0.59 0.65 

3-methyl- IH-indene — — — 0.83 2.12 5.93 

tetralin (1) — 0.27 0.83 1.95 5.18 5.37 3.86 

2-methyl- IH-indene — 0.11 0.29 0.19 0.45 0.47 0.39 

TK-130 ICioHiol — — 0.47 0.35 1.00 1.04 0.85 

1,2-dihydronaphthalene (2) 0.56 1.38 0.54 0.95 0.80 0.50 

TL-128 [CioHsl 0.14 

naphthalene (5) 0.30 0.11 0.34 0.12 0.89 1.12 2.51 

TO-148 [CiiHiel 0.06 0.08 

recovery / 93.99 84.00 81.25 88.33 74.00 80.14 69.83 

conversion 9 d 5.97 16.40 29.00 69.08 87.26 94.23 

^ Flow pyrolysis conditions: system pressure = 1 x lOr^ torr, flow rate = 24 mL 

min" ̂  (Ar), residence time = 0.31 s. ^ Amounts determined by GC with a known 

quantity of biphenyl added as steindard. Data represent the average of triplicate runs. 
Products identified by comparison with authentic samples or those that could be 

identified by retention time and GCMS are indicated by name. Products that were 

identified by GCMS only are indicated by code; XY-nnn, where 'X' corresponds to the 
system studied (A = pyrolysis of 4, T = pyrolysis of 1). T to the individual unknown 

product {A, B, C, etc.), and 'rmn' to the nominal mass. ^ See Table A-I, footnote c. ^ See 

Table A-I, footnote d. ® See Table A-II, footnote e./See Table A-I, footnote f. 9 See Table 

A-I, footnote g. 
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Table A-VI. Products and recovered starting material, total recovery of material, 
and conversion from the flow pyrolysis of 1,2-dihydronaphthalene (2) at 
various oven temperatures 

yield, % ^ 

entry RT d 800 "C 850 °C 903 °C 

indene (8) 0.11 0.73 2.43 

TD-130 ICioHiol 0.10 0.52 1.45 

TF-130 ICioHiol 0.27 0.27 — 

TH-130 [CioHiol 0.34 0.77 0.72 

3-methyl- IH-indene 0.21 0.69 1.86 

tetralin (1) 0.28 0.31 0.31 0.28 

2-methyl- IH-indene — — 0.10 0.33 

1,2-dihydronaphthalene (2) 99.72 89.91 73.23 31.09 

TL-128 [CioHgl — 0.06 — 0.12 

naphthalene (5) 8.68 23.38 61.72 

recovery ® 92.59 80.10 90.33 83.07 

conversion S d 10.09 26.77 68.91 

^ Flow pyrolysis conditions: system pressure = 1 x lO"^ torr, flow rate = 22 mL 

rtiin"! (Ar), residence time = 0.31 s. ^ See Table A-I, footnote b. ^ See Table A-I, footnote 

c. ^ See Table A-I, footnote d. ^ See Table A-I, footnote//See Table A-I, footnote g. 
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APPEimiX 2 

SUPPLEMENTARY PROCEDURES AND CALCULATIONS 

Detailed procedure for flow pyrolysis 

Initially, the flow pyrolysis apparatus (Figure 2, Paper 1) was filled with Ar. The 

pyrolysis portion of the apparatus was isolated from the sample chamber and flow 

control assembly with the three-way ball valve nearest the pyrolysis oven. After the 

pyrolysis portion of the apparatus had been evacuated, both the flow and bypass lines of 

the flow control assembly were pumped down. (CAUTION: Open the three-way ball valve 

slowly whenever a pressure difference exists. If released suddenly, the gas at higher 

pressure in the flow and bypass lines of the flow assembly or the sample chamber will 

push the hot chips from the pyrolysis oven into the trap. The ball valve is not designed 

to be a metering valve and should be left fully open or fully closed.) When both 

branches of the flow control assembly had reached the minimum pressure, the sample 

chamber was evacuated to ca. 15 in. vacuum (ca. ^ total volume) through the flow line 

(needle valve fully open) and then the rest of the Ar was removed through the bypass line 

(CAUTION: Pressure difference across three-way ball valve). This procedure was repeated 

at least three times and the entire apparatus was evacuated for at least 12 hr (flow 

assembly on bypass). 

A weighed sample in a 5-mL 14/20 round-bottom flask flushed with Ar was at­

tached to the sample inlet with a small amount of vacuum grease. The sample was 

frozen with liquid N2 and the sample inlet opened. After the system had returned to the 

minimum pressure (30-60 min), the sample inlet was closed and the sample allowed to 

warm to room temperature. The sample was refrozen with liquid N2 and opened to the 
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pump for an additional 15-30 mtn. The sample chamber was isolated from the flow as­

sembly and pyrolysis apparatus with the three-way ball valve nearest the sample 

chamber. The sample inlet was opened and the sample was allowed to warm to room 

temperature. No liquid sample remained in the flask. The sample chamber was filled with 

Ar to atmospheric pressure through the gas inlet. The gas inlet was closed and the gas 

mixture was allowed to equilibrate for 15 min. The pyrolysis trap was cooled with liquid 

N2. The flow of gas mixture into the previously equilibrated pyrolysis oven was main­

tained at a fixed rate of 20-25 mL min'^ (Ar/1 atm/flow tube = 60 (glass), 30 (SS)) until 

the sample chamber was evacuated to 15 in. vacuum (ca. ^ total volume). When the 

pyrolysis was complete (ca. 5 hr), the sample chamber and flow control assembly were 

isolated from the pyrolysis apparatus with the three-way ball valve nearest the pyrolysis 

oven. The pyrolysis portion of the apparatus was then filled with N2. After the trap had 

warmed to near room temperature, the trap was removed and 0.5 mL biphenyl in 

CH2CI2 (ca. 2 mg mL'l) and an additional 0.5 mL CH2CI2 was added to the trap. The 

trap was thoroughly rinsed with the solution, which was immediately analyzed by GC. 

After a clean trap was put in place, the pyrolysis portion of the apparatus was 

filled with N2 and evacuated several times. The remaining sample in the sample chamber 

was removed through the bypass line (CAUTION: Pressure difference across three-way 

ball valve). The apparatus was filled with Ar and evacuated as described above and 

allowed to pump down at least 12 h (flow assembly on bypass) before repeat use. 

Calculation of residence time for flow pyrolysis 

To calculate the residence time, the volume of the pyrolysis oven was measured. 

The pyrolysis run time is an average of many runs and represents the time necessary to 

evacuate the sample chamber from 0 to 15 in. vacuum at 20-25 mL min"^ (Ar/1 atm). 
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Volume of oven (Voven) 

Mass of chips + mass of graduated cylinder = mi 

Mass of water + mass of chips + mass of graduated 

cylinder = mf 

Mass of water = mw = mf - mi 

Volume of water = Vw = m^ 

Volume of chips + volume of water = Vf 

Volume of chips = Vchips = Vf - Vw 

Volume of tube = Vtube = ra-^h = 7r(1.2 cm)^(30 cm) 

Volume of oven = Voven = Vtube - Vchips 

Volume of sample at 760 torr and 300 K (Vsi) 

Pressure of sample (from Bourdon gauge) 

Initial pressure of sample = Pi 

Final pressure of sample = Pf 

Minimum pressure of system = Pmin 

Total volume of sample = Vt 
Pf - Pi 

Volume of sample = Vsi = p^^in - Pi 

Volume of sample at 0.78 torr and 1100 K (Vgg) 

Initial pressure of sample = Pi 

Final pressure of sample = P2 

Initial temperature of sample = Ti 

Final temperature of sample = T2 

Initial volume of sample = Vgi 

Pi T2 
Volume of sample = Vs2 = Vgl 

171.25 g 

248.92 g 

77.76 g 

77.76 mL 

100.0 

22.3 

135.7 

mL 

mL 

mL 

113.4 mL 

Pi = 0 in. vacuum 

Pf = 15 in. vacuum 

Pmin = 28 in. vacuum 

12 

6.4 

L 

L 

760 torr 

0.78 torr 

300 K 

1100 K 

6.4 L 

2.3 X 10^ mL 



www.manaraa.com

65 

Flow rate (Rf) 

Average run time = tg 

Flow rate = Rf = Vs2/ts 

Residence time (tr) 

Residence time = tr = Voven/Rf 
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APPENDIX 3 

ADDITIONAL DATA ON THE PYROLYSIS OF TETRALIN 

In addition to the data on the flow pyrolysis of tetralin (1) presented in Paper 1 of 

this dissertation, additional experiments were performed. The effects of flow rate, carrier 

gas, and pyrolysis tube size were examined and these data are reported here. Data on 

the flash vacuum pyrolysis of 1 in the presence of diluents is also presented in this 

appendix. 

Flow rate in flow pyrolysis 

The results of the pyrolysis of tetralin (1) at 850 °C and various flow rates are 

presented in Table A3-I. The data at 25 mL min" 1 can also be found in Table VIII of Paper 

1 in this dissertation. A drop in conversion from ca. 8% to 4% and recovery from near 

quantitative to 60% with increasing flow rate is observed. The dehydrogenation to 

ethylene loss ratio increased from 0.3 to 0.7 with increasing flow rate. The 

reproducibUity was less at higher flow rate. The range in the dehydrogenation to 

ethylene loss ratio at 25 mL min"l was 0.23 to 0.31, while at 95 mL rtiin"! the ratio 

ranged from 0.48 to 0.99. 

As the flow rate increases, the residence time of the sample in the pyrolysis oven 

decreases. The drop In conversion with increasing flow rate is expected. The decreasing 

recovery is most likely due to the difficulty in trapping out all of the pyrolysate at faster 

flow rates. The Increasing dehydrogenation to ethylene loss ratio may be caused by 

blmolecular reactions or could be an artifact resulting from poor reproducibility between 
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Table A3-I. Products and recovered starting material, total recovery of material, 
conversion, and dehydrogenation to ethylene loss ratio from flow py-
rolysis of tetralin (1) at various flow rates 

yield, % ^ 

entry 
10 

mL min'l 
25 

mL min"^ 
45 

mL min'l 
95 

mL min'l 
390 

mL min" ̂  

tetralin (1) 92.7 90.7 96.1 95.5 95.9 

1,2-dihydronaphthalene (2) 0.9 1.1 1.0 1.1 0.9 

naphthalene (5) 0.3 0.5 0.2 0.3 0.1 

benzocyclobutene (3) 3.9 4.7 1.7 1.9 2.2 

styrene (6) 0.7 1.1 0.2 0.2 0.3 

o-allyltoluene (4) 0.9 1.1 0.7 0.7 0.6 

2-methylindan (7) 0.4 0.6 0.1 0.2 — 

indene (8) 0.2 0.2 — 0.1 — 

recovery ^ 98.8 89.2 72.4 66.1 59.6 

conversion ® 7.3 9.3 3.9 4.5 4.1 

ratio (2 + 5)/(3 + 6) 0.26 0.28 0.65 0.68 0.38 

^Flow pyrolysis conditions: oven temperature = 850 °C, system pressure = 1 x 10"^ 

torr. Amounts determined by GC with a known quantity of biphenyl added as 

standard, flow rates are for sample (Ar) volume at 1 atm. Data represent the average of 

triplicate runs at 95 mL min'^ and the average of six runs at 25 mL min"^. Data for 
other runs are from a single experiment. ^ Moles of product divided by total moles of 

recovered material. ^ Total moles of recovered material divided by moles of starting 
material used. ® Total moles of recovered material minus moles of recovered starting 

material divided by total moles of recovered material. 
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runs at the higher flow rates. The flow rate of 25 mL min'l was chosen for the study of 

the flow pyrolysis of 1 at various oven temperatures presented in Table VIII of Paper 1 in 

this dissertation because of the high reproducibility and convenient temperature 

(conversion) range at this flow rate. 

Carrier gas in flow pyrolysis 

Two types of experiments were done to assess the effect of carrier gas on the flow 

pyrolysis of 1 : the use of helium as a carrier gas and the addition of hydrogen to the 

argon carrier gas. The data for flow pyrolysis with helium carrier gas at 850 °C are 

presented in Table A3-II. The recovery is only ca. 40-50% and the conversion ca. 5% for 

these runs. The dehydrogenation to ethylene loss ratio is between 0.1 and 0.25. The 

results of the flow pyrolysis of 1 at 850 °C with 18% and 36% hydrogen (by volume) in 

argon as carrier gas (Table A3-III) show a recovery of 80-100% and a conversion ca. 

10%. The dehydrogenation to ethylene loss ratio is near 0.3. 

The flow pyrolysis of 1 was not as convenient with helium as a carrier gas as 

with argon. Not only was the pyrolysate recovery with helium far lower (50% with He vs. 

90% with Ar), the annoyance of listening to the roughing pump's high pitched gurgling 

with helium bubbling through it all day carmot be underestimated. The dehydro­

genation to ethylene loss ratios are similar with the two carrier gasses but the effect of 

flow rate is less pronounced with helium than with argon. There were no apparent 

advantages of using helium as a carrier gas and argon was used for other experiments. 

We also attempted to induce dehydrogenation by adding hydrogen to the argon 

CEirrier gas. The flow pyrolysis of 1 with up to 36% hydrogen (by volume) in argon is for 

all intents and purposes identical to pyrolysis with 100% argon (25 mL min"^, Table 
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Table A3-n. Products and recovered starting material, total recovery of 
material, conversion, and dehydrogenation to ethylene loss 
ratio from flow pyrolysis of tetralin (1) with helium carrier 
gas 

yield, % c 

entry 
20 

mL min'l 
150 

mL min'l 

tetralin (1) 95.4 95.4 

1,2-dihydronaphthalene (2) 0.5 0.7 

benzocyclobutene (3) 2.9 2.9 

styrene (6) 0.4 0.3 

o-allyltoluene (4) 0.7 0.6 

2-methylindan (7) 0.2 — 

recovery ^ 40.8 52.2 

conversion ® 4.6 4.6 

ratio 2/(3 + 6) 0.14 0.21 

^ Flow pyrolysis conditions: oven temperature = 850 °C, 
system pressure = 1 x 10"2 torr. ^ Amounts determined by 
GC with a known quantity of biphenyl added as standard, 
flow rates are for sample (He) volume at 1 atm. Data are 
from a single experiment at each flow rate. ^ See Table A3-I, 
footnote c. ^ See Table A3-I, footnote d. ® See Table A3-I, 
footnote e. 
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Table A3-ni. Products and recovered starting material, total recovery of 
material, conversion, and dehydrogenation to ethylene loss 
ratio from flow pyrolysis of tetralin (1) with hydrogen in 
argon carrier gas 

yield, % ^ 

entry 
18% H2 

in Ar 
36% H2 

In Ar 

tetralin (1) 88.8 91.7 

1,2-dihydronaphthalene (2) 1.2 1.0 

naphthalene (5) 0.6 0.6 

benzocyclobutene (3) 6.0 4.4 

styrene (6) 1.3 0.8 

o-allyltoluene (4) 1.2 1.1 

2-methylindan (7) 0.6 0.4 

indene (8) 0.2 0.1 

o-( 1 -propenyl)toluene 0.1 — 

recovery ^ 100 84.7 

conversion ® 11.2 8.3 

ratio (2 + 5)/(3 + 6) 0.24 0.28 

^ Flow pyrolysis conditions; oven temperature = 850 °C. 
system pressure = 1 x 10'^ torr. ^ Amounts determined by 
GC with a known quantity of biphenyl added as standard, 
flow rates are for sample (H2 in Ar) volume at 1 atm. Data 
are from a single experiment with each gas mixture. ^ See 
Table A3-I, footnote c. ^ See Table A3-I, footnote d. ^ See 
Table A3-I, footnote e. 
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A3-I). The recovery and conversion data are similar and no increase in dehydrogenation 

was observed, flow pyrolysis with larger amounts of hydrogen was not attempted 

because of the potential explosive hazard associated with this experiment. 

Pyrolysis tube size in flow pyrolysis 

We also have studied the effect of a narrow 3 mm (id) pyrolysis tube on the flow 

pyrolysis of 1 (Table A3-IV). The recovery is between 10% and 50% and the conversion 

from 1% to 15% for pyrolysis at 800-940 °C. The dehydrogenation to ethylene loss ratio 

is ca. 0.3, except for the run at 850 "C, where the conversion is <1%, the ratio is >1. 

The results of the flow pyrolysis of 1 with the 3 mm pyrolysis tube are very 

similar to those with the normal pyrolysis tube with chip packing. The recovery was 

generally lower with the 3 mm tube but the dehydrogenation to ethylene loss ratios and 

product distributions were comparable, except for the run at 850 °C. However, the 

conversion is so low for this run that the ratio wUl have a large error. This tube is so 

narrow that it is difficult to work with. Note that the flow rates were markedly different 

at 850 °C and 940 °C even though the setting on the flow meter was the same. This 

experiment should be more practical with a tube of slightly larger diameter, perhaps 5-6 

mm (id). 

Copyrolysis with diluents in FVP 

We have also copyrolyzed 1 in the presence of diluents, some of which are 

expected to act as hydrogen atom chain terminators. The dehydrogenation to ethylene 

loss ratios for the FVP of 1 at 900 °C (system pressure = 10"® torr, sample temperature = 

RT) with ca. 5, 10, and 20 fold excess by mass of toluene are 0.90, 0.68, and 0.50, 
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Table A3-IV. Products and recovered starting material, total recovery of 
material, and conversion from flow pyrolysis of tetralin (1) 
with 3 mm (id) pyrolysis tube 

yield, % ^ 

entry 800 °C ^ 850 °C G 940 °C G 

tetralin (1) 84.1 99.1 94.0 

1,2-dihydronaphthalene (2) 2.3 0.4 1.2 

naphthalene (5) 0.7 — — 

benzocyclobutene (3) 7.9 0.3 3.6 

styrene (6) 1.7 — — 

o-allyltoluene (4) 2.0 0.2 1.2 

2-methylindan (7) 0.8 — — 

indene (8) 0.5 — — 

recovery f 30.5 46.4 13.6 

conversion 9 15.9 0.93 6.0 

ratio (2 + 5)/(3 + 6) 0.32 1.29 0.33 

^ Flow pyrolysis conditions: system pressure = 1 x 10'2 
torr. ^ Amounts determined by GC with a known quantity 
of biphenyl added as standard, flow rates are for sample (Ar) 
volume at 1 atm. Data are from a single experiment at each 
temperature. ^ See Table A3-I, footnote c. ^ Flow rate = 10 
mL min'l (Ar/l atm). ^The flow setting on the flow meter 
was identical for these two runs but the flow rate was 
substantially different: flow rate (850 °C) = 57 mL min"^, 
flow rate (940 °C) = 84 mL min"^./See Table A3-I, footnote 
cL 9 See Table A3-I, footnote e. 
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respectively. Similar experiments with 5, 10, and 20 fold excess by mass of benzene leads 

to dehydrogenation to ethylene loss ratios of 0.96, 0.58, and 0.82, respectively. When the 

less volatile diluent 2-chloro-p-xylene is copyrolyzed in a 5 fold excess by mass with 1 

the dehydrogenation to ethylene loss ratio is 0.39. By comparison, the dehydrogenation 

to ethylene loss ratio for the FVP of 1 alone at 900 °C under these conditions is 1.04. 

When less volatile diluents 2-chloro-p-xylene and mesitylene are copyrolyzed in a 5 fold 

excess by mass with 1 at 800 °C (system pressure = 10'^ torr, sample temperature = RT), 

the dehydrogenation to ethylene loss ratios are 0.71 and 0.57, respectively. By 

comparison, the dehydrogenation to ethylene loss ratio for the FVP of 1 alone at 800 °C 

under these conditions is 1.08. 

The experiments with toluene and benzene were designed to differentiate between 

the dilution effect of the addition of these compounds to the sample and the hydrogen 

atom chain terminating effect of toluene. The results show that both pyrolyses are 

nearly identical up to a 10 fold excess of diluent. There is no evidence that toluene is 

reducing dehydrogenation more than benzene, indicating that the main effect is dilution 

rather than hydrogen atom chain termination. The likely cause of the reversal at 20 fold 

excess of diluent is crystallization of the benzene sample when it is cooled prior to 

pyrolysis. At 20 fold excess of benzene, the tetralin (1) in the mixture may be located 

between crystal planes and, therefore, easily removed by the vacuum leaving the benzene 

behind in the sample chamber. The toluene sample, on the other hand, forms a glass 

when cooled and the same effect is not observed. 

The high volatility of toluene in comparison to 1 may have made it an ineffective 

hydrogen atom chain terminator so we chose some less volatile methylated benzene 

rings as diluents. When 2-chloro-p-xylene and mesitylene were copyrolyzed with 1, 

dehydrogenation was reduced more than in copyrolysis with either toluene or benzene. 
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with mesitylene reducing dehydrogenation more than 2-chloro-p-xylene. This could be 

interpreted as a hydrogen atom chain termination being proportional to the number of 

methyl groups on the benzene rings. 

The data presented above could be the result of heat transfer effects. The diluents 

may be acting as heat transfer agents effectively raising the temperature of the pyrolysis 

and reducing the dehydrogenation to ethylene loss ratio. The greater the excess of 

diluent the greater the effect, with the anomalous benzene result at 20 fold excess 

explained as above. The greater effect of 2-chloro-p-xylene and mesitylene could be due 

to their lower volatility making them more effective heat transfer agents. The apparent 

difference between the two could be to due to dehydrogenation induced by chlorine 

atoms produced by hydrodehalogenation from 2-chloro-p-xylene. 
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PAPER 2. THE FLASH VACUUM PYROLYSIS OF 

3-BENZOCYCLOHEPTENONE AND 

1,3,4,5-TETRAHYDRO-2-BENZOTHIEPIN-2.2-DIOXIDE 

MODEL SYSTEMS FOR 

THE GAS-PHASE PYROLYSIS OF TETRALIN 
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INTRODUCTION 

The gas-phase thermal decomposition of tetralin (1) gives rise to several products 

(Scheme The major products include primary products 1,2-dihydronaphthalene 

(2), benzocyclobutene (3), and o-allyltoluene (4). Secondary products, naphthalene (5) 

from 2, styrene (6) from 3. 2-methylindan (7)3 from 4, and indene (8) primarily from 7, 

have been identified along with various minor products. 

The thermal decomposition of 1 is believed to involve cleavage of the weak 

benzylic ceirbon-carbon bond to form dtradical 9. As part of our effort to understand the 

thermal decomposition of 1, we have studied the flash vacuum pyrolysis (FVP) of some 

model systems that could produce 9. It was hoped that the loss of carbon monoxide 

from 3-benzocycloheptenone (10) and sulfur dioxide from l,3,4,5-tetrahydro-2-benzothi-

1 9 

Scheme I 

3 6 
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epin-2,2-dloxlde (11) would involve the formation of intermediate 9. Our studies of the 

spa 

10 11 

FVP of ketone 10 and sulfone 11 and the photolysis of ketone 10 are presented in this 

paper. We also present a study of the pyrolysis of 10 under flow pyrolysis conditions 

that was conducted to discover to what extent the chemistry observed from FVP involves 

bimolecular reactions. 
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RESULTS 

3-Benzocycloheptenone (10) and l,3.4,5-tetrahydro-2-benzothiepin-2,2-dloxide 

(11) were prepared by the reaction sequences shown in Scheme II. 

When 3-benzocycloheptenone (10) was pyrolyzed at 10'^ torr, the major 

products were tetralin (1), 1,2-dihydronaphthalene (2), naphthalene (5), indene (8). 

1-methylnaphthalene (12), and 2-methylnaphthalene (13). At 700 °C, no benzocyclobu-

tene (3) or styrene (6) was detected: only at 850-900 °C were more substantial amounts 

of 3 and 6 observed. These results are summarized in Table I. 

Ketone 10 was also pyrolyzed under flow conditions (Table II) to investigate the 

possibility that bimolecular reactions were occurring in the FVP experiments. 

Comparable amounts of the major FVP products were also produced in the flow 

pyrolysis. 

The results of the photolysis of 10 (X, > 280 nm) in the presence of methanol are 

presented in Table III. The major products produced were 1 and 4. A small amount of 

methyl ester 14 was also detected. We could not Isolate this compound because of the 

Scheme II 

CH, 

CHaPPhgEr 

NaCHgSOCHa 

AgNOa, I2 
CH3OH 

10 

I.O3 
2. LIAIH4 
3. HBr OCL 

1. Nag S 
Br 2. m-CPBA 

11  
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14 

limited quantity, but the mass spectrum is consistent with structure 14 and none of the 

other products detected have the formula C12H16O2. 

The results from the FVP of sulfone 11 are strikingly different from those for 

ketone 10 (Table IV). The major product observed was tetralin (1), but some o-allyltolu-

ene (4) was also detected. ALL the other products were produced in only minor amounts. 
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Table I. Products and recovered starting material from FVP of 3-benzocyclohep-
tenone (10) at various oven temperatures 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

3-benzocycloheptenone (10) 93.3 88.6 63.6 38.6 11.9 

tetralin (1) 0.2 1.1 6.5 14.9 19.9 

1,2-dihydronaphthalene (2) 0.7 1.3 3.4 5.7 5.6 

naphthalene (5) 0.4 0.6 2.2 4.7 10.2 

benzocyclobutene (3) — 0.1 0.7 2.0 4.2 

styrene (6) — 0.2 0.4 1.1 4.0 

o-allyltoluene (4) — 0.2 0.8 1.8 1.9 

2-methylindan (7) — — 0.2 0.8 1.6 

indene (8) 0.2 0.7 3.3 8.2 15.3 

1-methylnaphthalene (12) 1.5 2.6 8.1 8.4 6.6 

2-methylnaphthalene (13) 0.6 1.1 3.1 3.5 3.0 

other products 2.9 ^ 3.4 d 7.6 d 10.3 15.4 d 

recovery ® 90.1 83.7 84.0 78.4 66.7 

conversion f 6.7 11.4 36.4 61.5 88.1 

^ FVP conditions: system pressure = 2 x 10'® torr, sample temperature = 30-40 °C. 

^ Amounts determined by GC with a known quantity of biphenyl added as standard. 

Data represent the average of triplicate runs. ^ Moles of product divided by total moles 
of recovered material. See Table A-I in the Appendix of Paper 2, this dissertation, for 

a more detailed analysis. ® Total moles of recovered material divided by moles of start­

ing material used. /Total moles of recovered material minus moles of recovered start­
ing material divided by moles of recovered material. 
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Table II. Products and recovered starting material from flow pyrolysis of 3-benzo-
cycloheptenone (10) at various oven temperatures 

yield, % ^ 

entry 750 "C 800 °C 850 °C 900 °C 

3-benzocycloheptenone (10) 90.2 79.8 49.8 12.2 

tetralln (1) 2.1 6.3 18.7 29.3 

1,2-dihydronaphthalene (2) 1.0 1.1 2.4 3.2 

naphthalene (5) 0.7 0.8 2.0 3.7 

benzocyclobutene (3) — 0.5 1.7 8.0 

styrene (6) — — 0.4 4.1 

o-allyltoluene (4) 0.6 1.0 2.1 3.9 

2-methyllndan (7) — — 0.7 2.6 

indene (8) 0.4 1.3 4.2 10.4 

1-methylnaphthalene (12) 1.9 3.5 7.8 8.6 

2-methylnaphthalene (13) 0.8 1.4 3.2 3.6 

other products 2.4 d 4.5 6.9 10.4 

recovery ® 54.0 50.4 52.3 45.9 

conversion f 9.8 20.2 50.2 87.8 

<^Flow pyrolysis conditions: system pressure = 0.010 torr, sample, temperature = 26 

°C, flow rate = 450 mL min'^ (Ar/1 atm) for 10 h, residence time = 0.28 s. ^ See Table I, 

footnote b. ^ See Table I, footnote c. ^ See Table A-II in the Appendix of Paper 2, this 
dissertation, for a more detailed analysis. ® See Table I, footnote e.fSee Table I, 

footnote f. 
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Table in. Products and recovered starting material from photolysis of 3-benzocy-
cloheptenone (10) 

yield, % ^ 

recovery, 
% D 

conversion, 
% E 10 1 4 14/ 

other 

prods. 

72.4 15.8 84.2 8.1 2.7 1.4 3.7 9 

Photolysis conditions: [10] = 0.33 mM in 11:1 (v:v) pentanes:methanol, medium 

pressure Hg lamp with Pyrex filter (X, > 280 nm), 2 h at room temperature. ^ See Table 

I, footnote b. ^ See Table I, footnote c. ^ See Table I, footnote e. ® See Table I, footnote 
/./GCMS (EI, 70 eV) m/e (% base peak) 192 (28.1), 161 (16.1), 119 (29.1), 118 (100), 117 
(33.6), 105 (55.5), 77 (20.6), 74 (47.1). 9 See Table A-III in the Appendix of Paper 2, this 

dissertation, for a more detailed analysis. 
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Table IV. Products and recovered starting material from FVP of 1,3,4,5-tetrahy-
dro-2-benzothiepin-2,2-dioxide (11) at various oven temperatures 

yield, % ^ 

entry 600 °C 700 °C 800 °C 900 °C 

l,3,4.5-tetrahydro-2-benzothie-

pin-2,2-dioxide (11) 84.0 8.5 0.1 — 

tetralin (1) 13.2 75.8 79.1 62.5 

1,2-dihydronaphthalene (2) 0.3 0.9 2.0 3.4 

naphthalene (5) — 0.3 0.9 4.6 

benzocyclobutene (3) 0.3 1.1 2.1 7.8 

styrene (6) 0.3 0.6 0.4 3.6 

o-allyltoluene (4) 2.0 12.5 11.3 5.4 

2-methylindan (7) — 0.2 2.6 5.2 

indene (8) — 0.1 0.6 4.4 

other products d d 0.7 d 2.9 d 

recovery ® 83.5 79.0 72.6 69.4 

conversion / 29.9 93.2 99.9 100 

FVP conditions: system pressure = 2 x 10'^ torr, sample temperature = RT. ^ See 

Table I, footnote b. ^ See Table I, footnote c. ^ See Table A-IV in the Appendix of Paper 

2, this dissertation, for a more detailed analysis. ® See Table I, footnote e./See Table I, 

footnote f. 
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DISCUSSION 

A comparison of the pyrolysis chemistry of 3-benzocycloheptenone (10) and 

tetralln (1) reveals three major differences. First, the pyrolysis of ketone 10 produces 

primarily 1,2-dihydronaphthalene (2) and naphthalene (5) whUe. flow pyrolysis of 1 

produces primarily benzocyclobutene (3) and styrene (6).5a Second, the amount of in-

dene (8) produced from the pyrolysis of ketone 10 is much larger than the amounts of 

o-allyltoluene (4) and 2-methylindan (7), but these products are obtained in comparable 

yields from 1.^ We have identified the pathway 4 to 7 to 8 as the major source of 8 in 

the decomposition of 1;® therefore, in the decomposition of ketone 10, 8 is unlikely to 

have resulted from the secondary pyrolysis of 4 and 7 and must have been produced by 

an alternate pathway. Finally, the pyrolysis of 10 leads to several CnHio products, 

most prominently 1-methyl (12) and 2-methylnaphthalene (13), that constitute a net 

loss of HgO from ketone 10 (C11H12O) and obviously have no parallel in the de­

composition of 1. 

The initial step in the decomposition of 3-benzocycloheptenone (10) is expected to 

be breakage of the weak benzyllc carbon-carbon bond leading to the formation of 

diradical 15 that could lose CO to form diradical 9. It Is reasonable to expect diradical 9 

10 

C' 

13 9 

to close to form tetralln (1) and disproportionate to form o-allyltoluene (4), and both are 

produced in the decomposition of 10 under FVP (Table I) and flow pyrolysis (Table II) 

conditions. Photolysis of ketone 10 also yields 1 and 4. Further support for the 

production of 1 and 4 from diradical 9 comes from study of the pyrolysis of the strained 
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hydrocarbon 16 that produces 1 and 4 as the major products eind probably involves 9 

as an intermediate.® 

16 

The production of a small amount of methyl ester 14 in the photolysis of 10 in 

the presence of methanol is explained by the addition of methanol to ketene 7. This 

.=-° 

17 14 

ketene could be formed from the disproportionation of carbonyl diradical 15. The 

observation of 14 supports the assumption that the loss of CO is stepwise and shows 

that 15 has an appreciable lifetime at room temperature in dilute solution. 

The relative amounts of dehydrogenation products, 1,2-dihydronaphthalene (2) 

and naphthalene (5), to ethylene-loss products, benzocyclobutene (3) and styrene (6), 

produced in the pyrolysis of ketone 10 are also of interest. We have previously observed 

that ethylene loss is the lowest energy gas-phase unimolecular reaction of 1.^^ The flow 

pyrolysis of 1 produces an ethylene loss to dehydrogenation ratio of between 3 and 5 to 

1 over the entire temperature range studied (750-900 °C). However, bimolecular 

dehydrogenation of 1 is the predominate reaction under some FVP conditions. 

The FVP of 10 clearly produces greater amounts of dehydrogenation than 

ethylene loss (Table I). No 3 or 6 was detected at 700 °C: although, larger amounts are 

produced at 850-900 °C. This increase corresponds to a leveling off of the amount of 1 

that indicates secondary pyrolysis is occurring. Even at 900 °C, the ratio of ethylene loss 

to dehydrogenation is ca. 0.5:1. 
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We studied the decomposition of 10 under flow pyrolysis conditions (Table II) to 

eliminate possible bimolecular reactions. Both FVP and flow pyrolysis produced an 

excess of dehydrogenation except at the highest flow pyrolysis temperature. At 900 "C, 

substantially less 2 and 5 is produced than in the corresponding FVP experiments. This 

is consistent with bimolecular dehydrogenation in the secondary decomposition of 1 

during FVP. In both the FVP and flow pyrolysis of 10, the increase in the amount of 3 

and 6 corresponds to a leveling off of the amount of 1. This indicates that the ethylene-

loss products appear to result from secondary decomposition of 1. Thus, the 

unimolecular thermal decomposition of 10 appears to produce more dehydrogenation 

products 2 and 5 than are produced by the unimolecular decomposition of 1. Possibly 2 

and 5 are produced from diradical 15 by a route that does not involve loss of CO to form 

diradical 9. 

The pyrolysis of ketone 10, whether under FVP or flow conditions, also produces 

more indene (8) relative to o-allyltoluene (4) and 2-methylindan (7) than is produced by 

tetralin (1) under similar conditions. We have shown^ that 8 produced in the 

decomposition of 1 is a secondary product ultimately derived from 4 that cyclizes to 7. 

The subsequent loss of a methyl group from 7 leads to the formation of 8. We can there­

fore conclude that 8 produced directly from 10 derives from another reaction path. Of 

course, at 900-950 °C where secondary pyrolysis of 1 takes place, some 8 no doubt 

comes from 4 and 7. It is difficult to quantify how much 8 is produced by the new 

reaction and how much from the 4 to 7 to 8 pathway at the higher pyrolysis tem­

peratures. 

The most surprising products of the pyrolysis of ketone 10 are the CnHio 

isomers that constitute an elimination of water from ketone 10. The major water-loss 

products produced in the pyrolysis of 10, under both FVP and flow conditions, are 
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1-methyl (12) and 2-methylnaphthalene (13). Several minor CnHio products were also 

observed in the pyrolysis of 10. These products are produced in diminishing amounts as 

the temperature is increased and appear to be precursor products to 12 and 13. These 

precursor products were produced in amounts too small to be isolated but literature 

precedence for the transformation of CnHio isomers to 12 and 13 was found.^ 

Previous workers had found that benzocycloheptatrienes IS and 19 (Scheme III) were 

formed in the pyrolysis of benzonorbomene.^^ At higher pyrolysis temperatures, 18 

and 19 were converted to 12 and 13.^^ One could speculate that 18 and 19 may be 

formed from ketone 10 through enol 20. A [1,5] hydrogen shift of 20 would form 

o-quinodimethane 21. The loss of H2O from 21 would give o-quinodimethane 22 and 

subsequent [1,5] hydrogen shifts would give 18 and 19. Benzocycloheptatriene 18 could 

provide a source of indene (8) if cyclization to 23 followed by the loss of acetylene 

occurred. 

The pyrolysis of l,3,4,5-tetrahydro-2-benzothiepin-2,2-dioxide (11) is as simple as 

the pyrolysis of 3-benzocycloheptenone (10) Is complex. The FVP of sulfone 11 produces 

tetralin (1) and a small amount of o-allyltoluene (4). At higher temperatures, the prod­

ucts appear to derive from secondary pyrolysis of 1. 

At a given temperature, sulfone 11 decomposes to a greater extent than ketone 

10. This is consistent with the benzylic-sulfonyl bond being weaker than the 

ben2ylic-carbonyl bond that is supported by bond energies.^ The ratio of tetralin (1) to 

o-allyltoluene (4) from sulfone 11 at lower pyrolysis temperatures (7.0 at 800 °C) is close 

to that produced from the pyrolysis of ketone 10 (6.3 at 800 °C) and may reflect the ratio 

of 1 to 4 that diradical 9 produces at this temperature. It is possible that some 1 from 

sulfone 11 may result from a concerted extrusion of SO2 with concurrent 
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carbon-carbon bond formation. Alternately, formation of diradical 24 followed by direct 

conversion of 24 to 1 with concurrent loss of SO2 may be responsible. 

OO" — CO-
11 24 9 
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CONCLUSION 

Several conclusions can be drawn from this study. First the thermal 

decomposition of ketone 10 in the gas-phase does produce diradical 9 but other 

reactions not involving 9 produce dehydration products (12, 13, and other minor 

products), dehydrogenation products (2 and 5), and indene (8). Second, the major 

reaction in the photochemical decomposition of 10 at room temperature involves 

diradical 9. Third, the major pathway of the thermal decomposition of sulfone 11 in the 

gas-phase also involves diradical 9. Fourth, in all three cases presented here and in a 

previous study,® where 9 was produced from strained hydrocarbon 16, the major 

products were tetralin (1) and o-allyltoluene (4). The ratio of 1 to 4 increases with 

temperature and is between 1 and 8 to 1 over a temperature range of 25 to 950 °C. Fifth, 

diradical 9 produces little or no dehydrogenation products (2 and 5) or ethylene-loss 

products (3 and 6). This conclusion supports the argument that ethylene loss from the 

thermal decomposition of tetralin (1) proceeds by a concerted mechanism and this 

argument has received support from other experiments.^^ 
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EXPERIMENTAL 

General Procedures 

Methods and materials 

Some general methods have been described previously.® Photolysis was 

performed using a water-cooled 450 W medium pressure Conrad-Hanovia lamp. 

NMR spectra were recorded on a Nicolet NT-300 spectrometer. FTIR spectra were 

obtained on an IBM IR/98 or a Digilab FTS-7 spectrophotometer. GCMS were per­

formed on a FInnegan 4000 mass spectrometer. HRMS were performed on a Kratos 

MS-50 mass spectrometer. All materials were commercially available and used as 

received, except where indicated. 

3-Benzocycloheptenone (10) 1 -Methylene-1,2,3,4-tetrahydronaphthalene 

was prepared by a modified literature procedure. 10 Dry DMSO (50 mL) was added to 

NaH (4.0 g, 0.165 mol) in a 250-mL three-neck round-bottom flask fitted with a 125-mL 

dropping funnel and condenser under Ar atmosphere with a magnetic stirrer. The 

solution was heated to 70-75 °C for 1 h (until H2 evolution had ceased). DMSO (100 mL) 

was added to methyltriphenylphosphonium bromide (53.6 g, 0.15 mol) that was then 

heated to ca. 70 "C until the salt completely dissolved. This solution was transferred to 

the dropping furmel and was added dropwise to NaCH2SOCH3/DMSO, forming a 

red-brown solution. After stirring for an additional 1 h, 1-tetralone (14.6 g, 0.10 mol) 

was added dropwise with a syringe and the solution was stirred for 2 h. H2O (250 mL) 

was added to the reaction mixture that was then extracted with hexanes (4 x 150 mL). 

The combined hexanes portions was washed with H2O (2 x 150 mL) and dried (MgSO^.). 

The hexanes solution was filtered through neutral alumina to remove residual triphen-
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ylphosphine oxide and color. The solvent was removed in vacuo. The product was 

purified by flash chromatography on a silica gel column (50 x 150 mm) with hexanes to 

yield 1 -methylene-1.2.3.4-tetrahydronaphthalene (13.5 g, 0.093 mol, 93% yield), bp 60-

61 °C (0.8 torr) [lit.H 103 °C (14 mm)]; NMR (CDCI3) 5 7.66-7.63 (m. 1 H). 7.17-7.05 

(m. 3 H). 5.47 (br s. 1 H). 4.94 (d. J = 1.3 Hz. 1 H). 2.84 (t. J= 6.3 Hz. 2 H). 2.55 (pseudo t, 

J= 6.2 Hz. 2 H). 1.88 (quintet. J= 6.2 Hz. 2 H) [lit. ^H NMR (benzene-de) 8 7.83-7.53 

(m. 1 H). 7.4&-7.03 (m. 3 H). 5.50 (br s. 1 H). 4.96 (br s. 1 H). 3.00-1.60 (m, 6 H)]; GCMS 

(EI. 70 eV) m/e (% base peak) 144 (46.4). 129 (100). 128 (46.5). 115 (15.6). 

The following procedure was adapted from the previously published procedure. 

AgNOs (4.7 g. 0.028 mol) was added to a dry 500-mL three-neck round-bottom flask 

fitted with a 125-mL pressure-equalizing dropping funnel and condenser under Ar. Dry 

CH3OH (2 Na. 150 mL) was added to the AgNOg and the solution was refluxed until the 

salt dissolved (<1 h). Care was taken to avoid exposure of this solution to light. I2 (3.6 g. 

0.014 mol) was dissolved in dry CH3OH (2 Na. 100 mL). After the AgNOs had dissolved. 

1 -methylene-1.2.3.4-tetrahydronaphthalene (2.0 g. 0.014 mol) was added to the I2 

solution in CH3OH. The stopper was removed from the dropping funnel and the 

alkene/l2 solution was immediately transferred ALL AT ONCE. The funnel was 

restoppered and the alkene/l2 solution was added RAPIDLY to the refluxing AgNOs In 

CH3OH over a period of a few minutes with rapid stirring. After the addition was 

complete, the reaction mixture was refluxed for an additional 5 h. When the solution 

had cooled to room temperature, the Agi was filtered off and washed with CH3OH (2 x 25 

mL). H2O (150 mL) and saturated NaCl (150 mL) were added to the filtrate. The reaction 

mixture was extracted with ether (4 x 150 mL) and the combined organic fractions was 

washed with H2O (2 x 150 mL) and saturated NaCl (150 mL). The organic phase was 

dried (MgSO^,). concentrated, and the crude ketone was purified by flash 
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chromatography on a silica gel column (50 x 160 mm) with 1:9 ethyl acetate to hexanes 

to yield 3-benzocycloheptenone (1.3 g, 8.2 mmol, 59% yield), mp (2,4-DNP derivative) 

170-170.3 "C [lit. 13 169-170.5 °CI: FTIR (KBr) 2941, 1713. 787, 756; NMR (CDCI3) S 

7.23-7.15 (m, 4 H). 3.73 (s. 2 H). 2.95 (t. J= 6.3 Hz, 2 H). 2.57 (t, J= 6.9 Hz. 2 H), 1.99 

(quintet. J= 6.6 Hz, 2 H) [lit. 13 ly NMR (CDCI3) ô 7.16 (s, 4 H). 3.7 (s. 2 H), 3.1-2.8 

(pseudo t, 2 H), 2.7-2.4 (pseudo t, 2 H). 2.2-1.6 (m. 2 H)]; GCMS (El. 70 eV) m/e (% base 

peak) 160 (82.1). 105 (88.0). 104 (66.8). 55 (100). 

l,3,4,5-Tetrahydro-2-benzothiepin-2,2-diozide (11) 1.2-Dihydronaph-

thalene (2.6 g, 0.020 mol) was dissolved in CH2CI2 (100 mL) and the solution was cooled 

to -78 °C. O3 (ca. 2% in O2) was bubbled through the solution until a blue color 

developed. Excess O3 was then removed by bubbling N2 through the solution until the 

blue color had dissipated. The reaction mixture was warmed to room temperature and 

the solvent was removed in vacuo. The ozonide was dissolved in THF (15 mL) and added 

dropwise to a slurry of LiAlH4 (0.8 g. 0.022 mol) in THF (100 mL) at 0 °C. After the 

addition was complete, the reaction mixture was stirred overnight at room temperature. 

A slurry of wet Na2S04 was added to the reaction mixture until evolution of H2 ceased. 

The white solid was filtered off and washed with ethyl acetate. The filtrate was dried 

(MgS04) and the solvent was removed in vacuo. The crude diol was distilled at 150 °C 

(0.2 torr) to yield o-(3-hydroxypropyl)benzyl alcohol (2.54 g. 0.015 mol, 75% yield). FTIR 

(thin film) 3375 (br). 2937. 1032. 758; ^H NMR (CDCI3) Ô 7.33-7.14 (m. 4 H). 4.67 (s. 2 H), 

3.50 (t. J= 6.0 Hz. 2 H), 2.82 (t, J= 6.9 Hz, 2 H). 1.90 (quintet. J= 6.6 Hz, 2 H). 

Hydrobromic acid (48%, 4 mL, 0.035 mol) was added to o-(3-hydroxy-

propyl)benzyl alcohol (0.62 g. 3.8 mmol) and the reaction mixture was heated to 100 °C 

for 8 h. After it had cooled to room temperature, the reaction mixture was extracted 

with ether (3 x 20 mL). The combined organic phases was washed with saturated 
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NaHC03 (20 mL), H2O (20 mL) and saturated NaCl (20 mL). The organic phase was dried 

(MgS04) and the solvent was removed in vacuo. The dibromide was purified by flash 

chromatography on a silica gel column (40 x 80 mm) with hexanes to yield 

o-(3-bromopropyl)benzyl bromide (0.88 g, 3.0 mmol, 79% yield). NMR (CDCI3) 6 7.37-

7.20 (m. 4 H). 4.56 (s. 2 H). 3.48 (t, J= 6.8 Hz, 2 H). 2.91 (t. J= 7.2 Hz, 2 H). 2.29-2.18 (m, 

2 H): GCMS (EI. 70 eV) m/e (% base peak) 294 (3.1), 292 (6.0), 290 (2.8), 213 (49.5), 211 

(52.9). 131 (84.9), 105 (100). 

Na2S*9H20 (0.82 g, 3.4 mmol) was dissolved in absolute ethanol (500 mL). Five 

portions of o-(3-bromopropyl)benzyl bromide (50 mg, 0.17 mmol, ca. 30 p.L) were added 

at 1 ̂  h intervals and then the reaction mixture was stirred overnight. This procedure 

was repeated with five additional portions of dibromide. After the reaction mixture was 

again stirred overnight, most of the ethanol (ca. 450 mL) was removed by distillation. 

H2O (100 mL) was added to the residue that was then extracted with ether (3 x 50 mL). 

The combined organic layers was washed with H2O (2 x 50 mL) and saturated NaCl (50 

mL). then dried (MgS04). The solvent was removed in vacuo and the crude product was 

purified by flash chromatography on a silica gel column (30 x 150 mm) with 5; 1 hexanes 

to CH2CI2 to yield 1,3,4,5-tetrahydro-2-benzothiepin (0.18 g, 1.1 mmol, 65% yield), mp 

46-48 °C [lit. 15 49-50 °C]: FTIR (thin film) 3014, 2937, 2918, 2842, 1449, 747; ^H NMR 

(CDCI3) 5 7.15-7.10 (m, 4 H), 3.83 (s, 2 H), 2.86-2.95 (m, 4 H), 2.03-1.94 (m, 2 H) [lit. 15 Ir 

NMR (CDCI3) 5 7.04 (m, 4 H). 3.76 (s, 2 H), 2.85 (t, J= 6 Hz, 2 H), 1.75 (t, 2 H), 1.15 (m, 2 

H)]; GCMS (EI, 70 eV) m/e (% base peak) 164 (100), 131 (51.9), 117 (46.5), 115 (37.9), 91 

(32.0). 

l,3,4,5-Tetrahydro-2-benzothlepln (0.18 g, 1.1 mmol) was dissolved in CH2CI2 (5 

mL). m-CPBA (80%, 0.52 g, 2.4 mmol) was added and the reaction mixture was stirred 

overnight. The reaction mixture was washed with saturated sodium bisulfite (10 mL), 1 
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M KOH (3 X 10 mL) and H2O (10 mL) and then dried (MgSO^,). The solvent was removed 

in uacuo to yield l,3.4,5-tetrahydro-2-benzothiepln-2,2-dioxide (0.21 g, 1.1 mmol, 100% 

yield), mp 179-180 °C (dec); FTIR (thin film) 2973, 2916, 2861, 1284, 1254, 1110, 858, 

781, 750; 1H NMR (CDCI3) 5 7.33-7.15 (m, 4 H). 4.39 (s, 2 H). 3.28 (t. J= 6.0 Hz. 2 H), 

3.01-2.95 (m. 2 H). 2.25-2.15 (m. 2 H); GCMS (EI. 70 eV) m/e (% base peak) 196 (18.7), 

132 (16.0), 104 (100), 91 (26.8); HRMS (EI, 70 eV) calculated for C10H12O2S. 196.05580; 

measured, 196.05604 (error+1.21 ppm). 

Flash vacuum pyrolysis Flash vacuum pyrolysis (FVP) was performed as 

previously described. 

Flow pyrolysis Flow pyrolysis was performed on the same apparatus 

described previously^^ except that the sample inlet was modified. An attachment was 

made that consisted of a Pyrex tube with 24/40 inner and outer joints attached to each 

end. The attachment also had glass tube that extended below the inner joint and passed 

through the side wall to a ground glass stopcock. The attachment was placed on the 

sample inlet of the flow pyrolysis apparatus and the sample, in a round-bottom flask, 

was placed on the other end of the attachment. After the usual degassing, Ar was flowed 

over the sample through the side tube on the attachment. The sample temperature was 

maintained for the entire pyrolysis time with a thermostatic oil bath. Other aspects of 

the flow pyrolysis were as previously described. 

Photolysis 3-Benzocycloheptenone (10, 32 mg, 0.20 mmol) was dissolved In 

550 mL of spectrophotometric grade pentanes and 50 mL methanol. After deseration for 

2 h with Ar, the sample was photolyzed for 2 h with a Pyrex filter (A, > 280 nm). The 

solution was extracted with H2O (500 mL), saturated NaCl (500 mL). and dried (MgSO^). 

The pentanes was removed by distillation until a few milliliters of solution remained. The 
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reaction mixture was analyzed as described below after 1 mL of ca. 5 mg mL" 1 solution 

of biphenyl in CH2CI2 was added. 

Product analysis FVP and flow pyrolysis reaction mixtures were analyzed 

by capillary gas chromatography on a Hewlett-Packard HP5840A gas chromatograph 

equipped with a 30-m (0.25-|im film thickness) DB-1701 capillary column using the 

analytical procedure previously described. Photolysis reaction mixtures were einalyzed 

on a Hewlett-Packard HP5890 gas chromatograph equipped with a 30-m (0.25-pm film 

thickness) DB-1 capillary colunm following the same analytical procedure used for FVP 

and flow pyrolysis reaction mixtures. 
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APPENDIX 1 

SUPPLEMENTARY DATA TABLES 

Table A-I. Products and recovered starting material, total recovery of material, 
and conversion from the FVP of 3-benzocycloheptenone (10) at various 
oven temperatures 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

toluene — — — — 1.46 

ethylbenzene — — 0.28 0.68 1.34 

o-xylene — — 0.36 1.15 2.68 

styrene (6) — 0.15 0.40 1.10 4.04 

benzocyclobutene (3) — 0.11 0.71 2.05 4.17 

o-ethyltoluene — — 0.42 1.33 1.53 

o-methylstyrene — — — — 0.96 

o-allyltoluene (4) — 0.17 0.85 1.76 1.92 

indene (8) 0.17 0.71 3.32 8.15 15.28 

2-methylindan (7) — — 0.21 0.83 1.60 

TD-130 [CioHiol — — — — 0.29 

o-(l-propenyl)toluene — — — — 0.45 

3-methyl- IH-indene — 0.12 0.26 0.51 0.93 

tetralin (1) 0.25 1.09 6.49 14.88 19.93 

2-methyl- IH-indene — — 0.15 — 0.50 

TK-130 [CioHiol — — 0.28 0.63 0.81 

Table A-I continues on next page 
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Table A-I. Continued 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 "C 900 °C 

1.2-dihydronaphthalene (2) 0.68 1.34 3.41 5.71 5.58 

TL-128 [CioHg] — — — — 0.22 

naphthalene (5) 0.36 0.64 2.20 4.72 10.24 

KA-142 ICiiHioI 1.47 1.10 1.14 0.59 0.24 

KB-142 [CiiHiol 0.20 0.32 0.66 0.58 0.29 

KC-142 [CiiHiol 0.74 0.50 0.49 — — 

2-methylnaphthalene (13) 0.63 1.06 3.12 3.47 3.04 

1-methylnaphthalene (12) 1.47 2.62 8.09 8.41 6.64 

KD-142 ICiiHiol — — 0.27 0.35 0.21 

KE-142 [CiiHiol — — 0.37 0.56 0.49 

KF-160 (C11H12OI — 0.07 0.11 — — 

KG-160 [C11H12O] — 0.08 0.11 — — 

KH-146 [CioHioO] 0.19 0.19 0.12 — — 

KI-160 [C11H12OI 0.11 0.27 0.75 1.06 0.63 

KJ d d 
— — — 

3-benzocycloheptenone (10) 93.26 88.55 63.57 38.55 11.90 

KK-160 [C11H12OI 0.14 0.35 1.15 1.81 1.49 

KL-160 [C11H12OI 0.33 0.47 0.38 0.32 0.09 

KM — — — — 
d 

KN-144 [CioHgOl — 0.09 0.32 0.87 1.11 

KO — — — — 
d 

KP d d d 

Table A-I continues on next page 
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Table A-I. Continued 

yield, % ^ 

entry 700 °C 750 "C 800 °C 850 °C 900 °C 

KQ 

recovery « 90.07 83.73 84.03 78.40 66.67 

conversion/ 6.74 11.45 36.43 61.47 88.10 

^ FVP conditions: system pressure = 2 x 10"^ torr, sample temperature = 30-40 °C. 

^ Amounts determined by GC with a known quantity of biphenyl added as standard. 

Data represent the average of triplicate runs. Products identified by comparison with 

authentic samples or those that could be identified by retention time and GCMS are 
indicated by name. Products that were identified by GCMS only are indicated by code: 

XY-nnn, where 'X' corresponds to the system studied (K = pyrolysis of 10, T = pyrolysis 

of 1), T to the individual unknown product (A, B, C, etc.), and 'nnn' to the nominal 
mass. ^ Moles of product divided by total moles of recovered material. ^ Product which 

constitutes <0.25% total area by GC. ® Total moles of recovered material divided by 
moles of starting material used. /Total moles of recovered material minus moles of re­

covered starting material divided by total moles of recovered material. 
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Table A-II. Products and recovered starting material, total recovery of material, 
and conversion from the flow pyrolysis of 3-benzocycloheptenone (10) 
at various oven temperatures 

yield, % ^ 

entry 754 °C 800 °C 851 °C 900 °C 

toluene — — — 0.56 

ethylbenzene — — — 0.29 

o-xylene — — 0.22 0.82 

styrene (6) — — 0.36 4.12 

benzocyclobutene (3) — 0,54 1.69 7.98 

o-ethyltoluene — — — 0.52 

benzaldehyde — — — 0.33 

o-allyltoluene (4) 0.58 0.95 2.13 3.87 

indene (8) 0.40 1,29 4.15 10.43 

2-methyllndan (7) — — 0.70 2.57 

TD-130 [CioHiol — — — 0.60 

o-(l-propenyl)toluene — 0.57 0.92 0.81 

TH-130 [CioHiol — — 0.94 

tetralin (1) 2.08 6.28 18.74 29.26 

1.2-dihydronaphthalene (2) 0.95 1.09 2.45 3.19 

naphthalene (5) 0.70 0.76 2.01 3.74 

siloxane ((CH3)2SiO)6 — — 
d 

— 

KA-142 [CiiHiol 0.50 0,36 0.30 — 

KB-142 [CiiHiol — 0.31 0.40 0.37 

2-methylnaphtheilene (13) 0.75 1.37 3.20 3.59 

1-methylnaphthalene (12) 1.91 3.48 7.85 8.63 

Table A-II continues on next page 
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Table A-n. Continued 

yield, % ^ 

entry 754 °C 800 °C 851 °C 900 °C 

KD-142ICiiHiol — — 0.28 0.60 

KF-160 [C11H12O] — 0.17 0.48 1.56 

KH-146 [CioHioO] 0.50 0.50 0.41 0.13 

KI-160 [C11H12O] 0.31 0.76 1.03 0.60 

3-benzocycloheptenone (10) 90.15 79.79 49.76 12.22 

KK-160 IC11H12O] 0.73 1.32 2.64 2.61 

KL-160 [C11H12O] 0.44 0.45 0.27 — 

recovery ^ 54.04 50.36 52.26 45.87 

conversion / 9.85 20.21 50.24 87.78 

^Flow pyrolysis conditions: system pressure = 0.010 torr, sample temperature = 26 
°C, flow rate = 450 mL min'l (Ar/1 atm) for 10 h, residence time = 0.28 s. ^ See Table 

A-I, footnote b. ^ See Table A-I, footnote c. Product which constitutes <0.50% total 

area by GC. ® See Table A-I, footnote e./See Table A-I, footnote J. 
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Table A-III. Products and recovered starting material, total recovery of material, 
and conversion from the photolysis of 3-benzocycloheptenone (10) 

entry yield, % entry yield, % ^ 

IA-142 [C11H12I 0.12 LH-192 [C12H16O2] (14) 1.44 

LB-142 [C11H12I 0.58 LI-160 [C11H12O] 0.65 

LC-142 [CnHi2l 0.35 LJ-160 [C11H12OI 0.49 

LD-142 [C11H12I 0.39 LK d 

o-allyltoluene (4) 2.67 LL d 

LE d LM d 

tetralin (1) 8.06 LN d 

LF-160 [C11H12OI 0.67 

LG-160 [C11H12O] 0.38 recovery ® 72.38 

3-benzocycloheptenone (10) 84.20 conversion f 15.80 

Photolysis conditions: [10] = 0.33 mM in 11:1 (v:v) pentanes:methanol. medium 

pressure Hg lamp with Pyrex filter (X, > 280 nm), 2 h at room temperature. ^ Amounts 

determined by GC with a known quantity of biphenyl added as standard. Data repre­
sent the average of triplicate runs. Products identified by comparison with authentic 

samples or those that could be identified by retention time and GCMS are indicated by 

name. Products that were identified by GCMS only are indicated by code: XY-nnn, 
where 'X' corresponds to the system studied (L = photolysis of 10), 'V to the individual 

unknown product (A, B, C, etc.), and 'nrm' to the nominal mass. ^ See Table A-I, foot­

note c. ^ Product which constitutes <0.75% total area by GC. ® See Table A-I, footnote 

e. fSee Table A-I, footnote f. 
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Table A-IV. Products and recovered starting material, total recovery of material. 
and conversion from the FVP of l,3,4,5-tetrahydro-2-benzothie-
pin-2,2-dioxide (11) at various oven temperatures 

yield, % ^ 

entry 600 °C 700 °C 800 "C 900 °C 

ethylbenzene — — 0.32 0.52 

o-xylene — — 0.14 0.42 

styrene (6) 0.25 0.58 0.45 3.61 

benzocyclobutene (3) 0.29 1.13 2.07 7.79 

siloxane ((CH3)2SiO)4 — — 
d 

o-methylstyrene — 0.13 0.49 

o-allyltoluene (4) 2.04 12.48 11.34 5.40 

indene (8) — 0.13 0.61 4.43 

2-methylindan (7) — 0.17 2.60 5.25 

siloxane ((CH3)2SiO)5 d d 
— — 

o-( l-propenyl)toluene — — 0.21 1.13 

tetralin (1) 13.18 75.77 79.10 62.53 

2-methyl- IH-indene — — — 0.36 

1,2-dihydronaphthalene (2) 0.28 0.94 1.98 3.44 

naphthalene (5) — 0.27 0.91 4.63 

siloxane ((CH3)2SiO)6 d d d 
— 

SA — 
d 

— — 

SB — 
d 

— — 

SC — 
d d 

— 

SD — — 
d 

— 

SE d 

Table A-IV continues on next page 
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Table A-IV. Continued 

yield. % ^ 

entry 600 °C 700 °C 800 °C 900 °C 

SF d _ _ _ 

l,3,4,5-tetrahydro-2-benzo-

thiepm-2.2-dioxide (11) 83.96 8.54 0.14 — 

recovery « 83.54 79.01 72.56 69.40 

conversion/ 29.86 93.25 99.90 100.0 

FVP conditions: system pressure = 2 x 10'^ torr, sample temperature = RT. 

^ Amounts determined by GC with a known quantity of biphenyl added as standard. 

Data represent the average of triplicate runs. Products identified by comparison with 

authentic samples or those that could be identified by retention time and GCMS are 
indicated by name. Products that were identified by GCMS only are indicated by code; 

XY-nnn, where 'X* corresponds to the system studied (S = pyrolysis of 11), T to the 
individual unknown product (A, B, C, etc.), and 'nnn' to the nominal mass, c See Table 

A-I, footnote c. ^ See Table A-II, footnote d. ® See Table A-I, footnote e./See Table A-I, 

footnote J. 
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APPENDIX 2 

SUPPLEMENTARY PROCEDURES AND CALCULATIONS 

Detailed procedure for flow pyrolysis of ketone (10) 

Flow pyrolysis was performed on the same apparatus (Figure 2, Paper 1) 

described in the Experimental Section of Paper 1 in this dissertation except that the 

sample inlet was modified. An attachment was made that consisted of a Pyrex tube with 

24/40 inner and outer joints attached to each end. The attachment also has a glass tube 

that extends below the inner joint and passes through the side wall to a ground glass 

stopcock. The attachment was placed on the sample inlet of the flow pyrolysis apparatus 

with a small amount of vacuum grease. The weighed sample [ca. 50 mg) in a 5-mL 

round-bottom flask was placed on the other end of the attachment with a small amount 

of vacuum grease. 

The apparatus and sample were degassed as described in Appendix 2 of Paper 1 in 

this dissertation prior to pyrolysis. During the pyrolysis, Ar was flowed over the sample 

through the side tube on the attachment. The sample temperature was maintained for 

the entire pyrolysis time with a thermostatic oil bath (26-27 °C). A flow rate of 450 mL 

min'l (Ar/1 atm/flow tube = 100 (SS)) was maintained for 10 h to allow enough sample 

to pyrolyze for aneilysis (ca. 2-3 mg). Initially, ca. 50 mg of sample was used. The sample 

was weighed before and after pyrolysis to determine how much had pyrolyzed. The same 

sample could be used for several runs. However, since the sample size effects the amount 

of substance pyrolyzed, the total size of the sample was not allowed to drop below ca. 35 

mg. Other aspects of the flow pyrolysis were as described in Appendix 2 of Paper 1 in this 

dissertation. 
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Calculation of residence time for flow pyrolysis of ketone (10) 

This calculation of residence time is similar to the one in Appendix 2 of Paper 1 in 

this dissertation. The same oven volume was used here. The pyrolysis time was 

determined in separate runs where the time necessary to evacuate the sample chamber 

from 0 to 15 in. vacuum at 450 mLmin'^ (Ar/1 atm) was measured. 

Volume of argon at 760 torr at 300 K (VAI) 

Pressure of sample (from Bourdon gauge) 

Initial pressure of argon = Pi 

Final pressure of argon = Pf 

Minimum pressure of system = Pmin 

Total volume of argon = VT 
Pf - Pi 

Volume of argon = VAI = p^ax - Pi 

Volume of argon at 15 torr at 1100 K (VA2) 

Initial pressure of sample = Pi 

Final pressure of sample = P2 

Initial temperature of sample = Ti 

Final temperature of sample = T2 

Initial volume of argon = VAI 
Pi To 

Volume of argon = VA2 = ^i 

Flow rate (Rf) 

Average time = tg 

Flow rate = Rf = VA2/ts 

Residence time (tr) 

Volume of oven = Voven 

Residence time = tr = Voven/Rf 

Pi 

Pf 

= 0 in. vacuum 

= 15 in. vacuum 

Pmin = 28 in. vacuum 

12 L 

6.4 L 

760 

15 

300 

1100 

6.4 

torr 

torr 

K 

K 

L 

1.2 X 106 mL 

14 min 

8.6 X lO'^ mL min' ^ 

113 mL 

0.08 s 
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PAPER 3. THE HIGH-TEMPERATURE GAS-PHASE REACTIONS OF 

O-ALLYLBENZYL RADICALS GENERATED BY 

FLASH VACUUM PYROLYSIS OF BIS( O-ALLYLBENZYL) OXALATE 
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INTRODUCTION 

In the gas-phase thermal decomposition of tetralin the major products 

include 1,2-dihydronaphthalene (2) and naphthalene (3), derived by the loss of hydrogen, 

and benzocyclobutene (4) and styrene (5), derived by the loss of ethylene (Scheme I). 

Several other significant products such as indene (6), formed by the loss of the equivalent 

of methane from 1, are also produced. One of the mechanisms proposed^l for the 

formation of 2 involves the o-allylbenzyl radical (7) formed from dtradical 8 by loss of a 

hydrogen atom. Conversion of 7 to 2 is reasonable, but previous studies^ of 

related radicals indicate that 7 could produce other products such as 6. In an attempt to 

determine the fate of radical 7 under high-temperature gas-phase conditions, we have 

studied the flash vacuum pyrolysis (FVP) of bis(o-allylbenzyl) oxalate (9). Oxalates have 

2 

8 7 

Scheme I 

6 



www.manaraa.com

I l l  

been shown to be good precursors of benzyl radicals under FVP conditions^ and we 

expected 9 to produce 7 in good yield. The results of the study of the FVP of 9 are 

O 

^ 2 + 2C0a 

9 

presented in this paper. 
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RESULTS 

Oxalate 9 was prepared from 1,2-dlhydronaphthalene (2) by the following reaction 

The FVP of 9 (Table I) leads primarily to the formation of 1,2-dihydronaphthalene 

(2), naphthalene (3), indene (6), 3-methyl-lH-indene (10), and 2-methyl-lH-indene (11). 

Small amounts (<2 %) of tetralin (1), benzocyclobutene (4), styrene (5), o-allyltoluene (12), 

and 2-methylindan (13)^ were produced. The dimer of 7, l,2-di(2-allylphenyl)ethane (14), 

was detected (<1 %) at 700-750 °C. 

sequence. 

O 
1. FVP 
2. LiAlH, 

I.O3 
2. LlAlH, 

OAc 3. (CICO) 3. CHoCOCl ^ 

2 9 
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Table I. Products and recovered starting material from FVP of bis(o-allylbenzyl) 
oxalate (9) at various oven temperatures 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

bis(o-allylbenzyl) oxalate (9) 3.4 1.7 1.2 0.3 — 

1,2-dihydronaphthalene (2) 62.6 62.2 60.5 55.2 46.4 

naphthalene (3) 5.3 7.5 11.1 16.5 27.1 

indene (6) 6.3 6.9 8.2 10.1 12.3 

3-methyl-lH-indene (10) 4.2 4.4 3.6 2.9 2.2 

2-methyl-IH-Indene (11) 1.4 1.5 1.8 1.7 1.8 

l,2-di(2-allylphenyl)ethane (14) 0.7 0.2 — — — 

other products 16.0 d 15.5 13.6 d 13.2 d 10.2 d 

recovery ® 71.5 65.1 68.7 67.1 59.9 

conversion/ 96.6 98.3 98.8 99.7 100 

^ FVP conditions: system pressure = 1 x 10'® torr, sample temperature = 60-80 °C. 

^ Amounts determined by GC with a known quantity of triphenylmethane added as 

standard. Data represent the average of triplicate runs. ^ Moles of product divided by 

total moles of recovered material. ^ See Table A-I in the Appendix of Paper 3, this 
dissertation, for a more detailed analysis. ® Total moles of recovered material divided by 

moles of starting material used. /Total moles of recovered material minus moles of 

recovered starting material divided by moles of recovered material. 
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DISCUSSION 

The gas-phase chemistry of o-allylbenzyl radical (7) and other related radicals 

(Scheme II), such as 1-tetryl (15), 2-tetryl (16), 1-indanylmethyl (17), and 

2-lndanylmethyl (18), has been studied:^ although, the high-temperature gas-phase 

chemistry of 7 was not investigated directly.^®-^ 

The FVP of bis oxalate ester 9 leads primarily to the formation of 1,2-dihydronaph-

thalene (2) produced by loss of the J3 hydrogen from 16. Significant amounts of naphtha­

lene (3), from the secondary pyrolysis of 2, were also observed. The thermal behavior of 7 

appears to be similar to that of 5-hexenyl radicals. There may be a kinetic preference of 

CO. 2 kcal mol'l for the formation of the five-membered 2-indanylmethyl radical (18) over 

the six-membered 2-tetryl radical (16), but under pyrolysis conditions, 

Scheme II 

0:>»-=CC.= CO. 

15 17 
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the initial closure will be reversible and the chemistry of the more stable 16 should 

predominate. 

Consistent with the previously reported results,^ expected products such as 10 

and 11, formed from radicals 17 and 18, respectively, were also observed. Indene (6), as 

well as small amounts of 12 and 13 were also formed. The ratio of 6 to dehydrogenation 

products 2 and 3 was low, less than 0.17 to 1. In the pyrolysis of tetralin (1), this ratio is 

much higher, 0.6 to 1 at higher temperatures, and therefore the major route to 6 in the 

decomposition of 1 carmot involve radical 7. Other recent work in our laboratory^ 

indicates that the major source of 6 involves the pathway 1 to 12 to 13 to 6. In the 

pyrolysis of oxalate 9, any of all of the radicals 17, 18, or 19 could be the source of 6. 

Another minor product at lower pyrolysis temperatures is 14, the dimer of radical 

7. Production of 14 offers further support for the formation of 7 in the pyrolysis of 9. 
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CONCLUSION 

The results of the FVP of bis(o-allylbenzyl) oxalate (9) are consistent with the 

formation of o-allylbenzyl radical (7). The major product from 7 is 1,2-dihydronaphtha-

lene (2) which is readily explained by closure of 7 to 16 followed by the loss of a J3 

hydrogen atom. Other products which could come from radical 7 are formed in relatively 

low yields. 
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EXPERIMENTAL 

General Procedures 

Methods and materials 

Some general methods have been described previously.® NMR spectra were 

recorded on a Nicolet NT-300 spectrometer. FTIR spectra were obtained on an IBM IR/98 

spectrophotometer. GCMS were performed on a Firmegan 4000 mass spectrometer. 

HRMS were performed on a Kratos MS-50 mass spectrometer. All materials were 

commercially available and used as received, except where indicated. 

Bis(o-allylbenzyl) oxalate (9) o-(3-Hydroxypropyl)benzyl alcohol (3.0 g, 

0.018 mol), prepared as described previously,^ was dissolved in dry ether (50 mL) and tri-

ethylamine (4.0 g, 0.040 mol, ca. 5.5 mL) was added. The mixture was cooled to 0 "C and 

a solution of acetyl chloride (3.1 g, 0.040 mol, ca. 2.8 mL) in ether (20 mL) was added 

dropwise. After the addition was complete, the reaction mixture was stirred for 10 min at 

0 °C and then overnight at room temperature. The reaction mixture was washed with 

H2O (20 mL), saturated NaHCOg (20 mL) and H2O (20 mL) and then dried (MgSO^). The 

solvent was removed in vacuo to yield o-(3-acetoxypropyl)benzyl acetate (4.1 g, 0.016 mol, 

89% yield). FTIR (thin film) 2960, 1749, 1454, 1383, 1367, 1259, 1034, 758; NMR 

(CDCI3) 5 7.37-7.18 (m. 4 H), 5.14 (s, 2 H), 4.11 (t, J= 6.4 Hz, 2 H), 2.74 (t, J= 7.8 Hz. 2 

H), 2.11 (s, 3 H), 2.07 (s, 3 H), 2.01-1.90 (m. 2 H). 

o-(3-Acetoxypropyl)benzyl acetate (3.9 g, 0.016 mol) was pyrolyzed at 700 °C and 1 

x 10'^ torr with a sample temperature of 80 °C. The pyrolysate was dissolved in ether 

and treated with K2CO3. The solvent was removed in vacuo and the crude product was 

purified by flash chromatography on a silica gel column (50 x 150 mm) with 1:1 hexanes 
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to CH2CI2 to yield o-allylbenzyl acetate (1.5 g, 7.9 mmol. 49% yield). FTIR (thin film) 

2924. 1742, 1229, 1026. 754; NMR (CDCI3) 5 7.37-7.18 (m, 4 H). 5.96 (ddt, Jd = 16.8 

Hz. Jd = 10.3 Hz. Jt = 6.3 Hz, 1 H). 5.07 (dd, Jd = 10.2 Hz. Jd = 1.1 Hz. 1 H), 4.99 (dd. Jd 

= 17.1 Hz, Jd = 1.1 Hz, 1 H), 5.13 (s. 2 H). 3.44 (d. J= 6.2 Hz. 2 H). 2.09 (s. 3 H). 

o-AUylbenzyl acetate (1.5 g. 7.9 mmol) was dissolved in THF (10 mL) and added 

dropwise to a slurry of LiAlH^ (0.4 g. 0.010 mol) in THF (50 mL) at 0 °C. The reaction 

mixture was allowed to warm to room temperature and stirred for 2 h. A slurry of wet 

Na2S04 was added to the reaction mixture until evolution of H2 ceased. The white solid 

was filtered off and washed with ethyl acetate. The filtrate was dried (MgSO^) and the 

solvent was removed in vacuo to yield o-allylbenzyl alcohol (1.1 g. 7.4 mmol. 94% yield). 

FTIR (thin film) 3333 (br), 2918, 1040: ^H NMR {CDCI3) 8 7.41-7.36 (m, 1 H). 7.34-7.18 

(m. 3 H), 6.01 (ddt, Jd = 16.8 Hz, Jd = 10.4 Hz, Jt = 6.3 Hz, 1 H), 5.07 (dq, Jd = 10.1 Hz, 

Jq = 1.5 Hz, 1 H), 5.00 (dd. Jd = 17.2 Hz. Jd = 1.5 Hz. 1 H). 4.71 (d. J= 5.9 Hz. 2 H), 3.48 

(dt, Jd = 6.2 Hz. Jt = 1.4 Hz. 2 H). 1.26 (t. J= 6.0 Hz. 1 H) [Ut.^c Ir NMR (CDCI3) 8 7.6-

7.1 (m, 4 H). 6.02 (ddt. Jd = 16.6 Hz. Jd = 10.5 Hz. Jt = 6.1 Hz. 1 H). 5.05 (m. 1 H (cis)). 

5.0 (m. 1 H [trans)). 4.70 (s, 2 H), 3.47 (dt, 2 H), 1.6 (s. 1 H)l. 

o-Allylbenzyl alcohol (1.2 g, 8.0 mmol) was dissolved in ether (150 mL) and 

triethylamine (1.1 g, 0.011 mol) was added. The reaction mixture was cooled to 0 °C and 

oxalyl chloride (0.8 g, 6.0 mmol) in ether (10 mL) was added dropwise. After the reaction 

mixture was stirred for 1 h at room temperature, it was extracted with H2O (50 mL). 

saturated NaHCOs (2 x 50 mL). H2O (50 mL). and saturated NaCl (50 mL) and then dried 

(MgS04). The solvent was removed in vacuo and the crude product was purified by flash 

chromatography on a silica gel column (30 x 150 mm) with 1:1 CH2CI2 to hexanes to 

yield bis(o-allylberKyl) oxalate (1.1 g, 3.2 mmol, 80% yield). FTIR (thin film) 2957. 2924, 

1767, 1744, 1155: ^H NMR (CDCI3) 8 7.41-7.19 (m. 4 H). 5.94 (ddt. Jd = 16.8 Hz. Jd = 
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10.4 Hz, Jt = 6.3 Hz. 1 H), 5.33 (s. 2 H), 5.02 (dq. Jd = 10.1 Hz, Jq = 1.5 Hz, 1 H), 4.95 

(dd. Jd = 17.0 Hz, Jd = 1.7 Hz, 1 H), 3.45 (dt, Jd = 6.2 Hz, Jt = 1.4 Hz, 2 H); GCMS (CI. 

NHs) m/e 368 (M + IMH4); GCMS (El, 70 eV) m/e (% base peak) 260 (5.5), 219 (4.8), 131 

(100), 130 (98.6), 116 (15.6), 115 (22.0), 91 (45.6): Analysis calculated for C22H22O4, C 

75.41%, H 6.33%: measured, C 75.42%, H 6.36%. 

Flash vacuum pyrolysis Flash vacuum pyrolysis (FVP) was performed as 

previously described.^G,9 

Product analysis FVP reaction mixtures were analyzed by capillary gas 

chromatography on a Hewlett-Packard HP5840A gas chromatograph equipped with a 

30-m (0.25-|im film thickness) DB-1701 capillary column using the analytical procedure 

previously described except that the standard used was triphenylmethane instead of 

biphenyl.^a 
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APPENDIX 

SUPPLEMENTARY DATA TABLE 

Table A-L Products and recovered starting material, total recovery of material, 
and conversion from the FVP of bis(o-allylbenzyl) oxalate (9) at various 
oven temperatures 

yield, % ^ 

entry 700 "C 750 °C 800 "C 850 °C 900 °C 

toluene 0.84 0.81 0.66 1.78 0.95 

ethylbenzene 0.64 0.52 0.55 0.82 0.82 

o-xylene 0.41 0.64 0.58 0.90 0.79 

styrene (5) 0.44 0.40 0.43 0.61 0.68 

benzocyclobutene (4) 0.21 0.26 0.29 0.37 0.40 

allylbenzene 0.23 0.19 0.19 0.20 0.15 

o-ethyltoluene 0.27 0.36 0.45 0.50 0.42 

o-methylstyrene 0.57 0.68 0.68 0.84 0.81 

o-allyltoluene (12) 1.42 1.03 0.84 0.65 0.32 

indene (6) 6.29 6.89 8.15 10.06 12.32 

2-methylindan (13) 0.22 0.24 0.32 0.36 0.35 

TD-130 [CioHiol 0.96 1.02 0.88 0.75 0.62 

TE-130 ICioHiol — 0.08 — 0.17 0.22 

TF-130 [CioHiol — — — 0.21 0.26 

o-methylbenzaldehyde 0.17 0.20 — — — 

o-(l-propenyl)toluene 0.20 0.18 — 0.16 0.14 

Table A-I continues on next page 
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Table A-I. Continued 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

TH-130 [CioHiol 0.48 0.78 0.83 0.84 0.84 

3-methyl-IH-indene (10) 4.19 4.35 3.57 2.88 2.18 

tetralin (1) 0.97 1.15 1.11 1.16 1.01 

2-methyl-lH-indene (11) 1.45 1.52 1.79 1.70 1.81 

1,2-dihydronaphthalene (2) 62.63 62.20 60.54 55.23 46.44 

TL-128 [CioHsl — — — 0.11 0.22 

1,4-dihydronaphthalene 1.59 1.02 0.35 0.22 — 

OA-144 IC11H12I — 0.08 — — — 

naphthalene (3) 5.30 7.54 11.12 16.54 27.11 

1 -methyltetralin 0.62 0.69 0.86 0.74 0.63 

siloxane ((CH3)2SiO)6 d d 
— — — 

OB-144 [C11H12I 0.10 0.15 0.33 — — 

TO-148 [CiiHiel 1.65 1.98 2.10 1.09 0.52 

OC-146 [C11H14 or CioHioO] 0.67 0.35 0.31 0.11 — 

OD-146 (C11H14 or CioHioO] 0.56 0.40 0.26 — — 

OE-146 [C11H14 or CioHioO] 1.26 0.56 0.73 0.13 — 

OF-220 [C12H12O4] 0.13 0.09 0.16 0.13 — 

OG d d d 
— — 

bis(o-allylbenzyl) oxalate (9) 3.44 1.72 1.22 0.33 — 

OH-148 [CnHie or C10H12OI 0.33 1.45 0.45 — — 

1-tetralone 0.32 0.24 0.23 0.39 — 

01 d 

Table A-I continues on next page 
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Table A-I. Continued 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

1,2-diphenylethane 

1,2-di(2-inethylphenyl)ethane 

OJ 

OK 

OL 

OM 

l,2-di(2-allylphenyl)ethane (14) 

recovery e 71.49 65.07 68.72 67.12 59.93 

conversion/ 96.56 98.28 98.78 99.67 100.0 

^ FVP conditions: system pressure = 1 x 10"^ torr, sample temperature = 60-80 °C. 

^ Amounts determined by GC with a known quantity of triphenylmethane added as 

standard. Data represent the average of triplicate runs. Products identified by 

comparison with authentic samples or those that could be identified by retention time 
and GCMS are indicated by name. Products that were identified by G CMS only are 

indicated by code: XY-nnn, where 'X' corresponds to the system studied (O = pyrolysis 
of 9, T = pyrolysis of 1), T to the individual unknown product (A, B, C, etc.), and 'nnn" 

to the nominal mass. ^ Moles of product divided by total moles of recovered material. 

Product which constitutes <0.50% total area by GC. ® Total moles of recovered mate­

rial divided by moles of starting material used. /Total moles of recovered material 
minus moles of recovered starting material divided by total moles of recovered 

material. 

0.49 

0.25 

0.69 0.24 

d 

d 

d 

d 
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PAPER 4. THE FLASH VACUUM PYROLYSIS OF 

1,4-DIPHENYLBUTANE 
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INTRODUCTION 

We have concluded from our study of the gas-phase decomposition of tetralin (1) 

that the lowest energy unimolecular reaction of 1 is ethylene loss to form benzocyclobu-

tene (2),^ a conclusion that has also been reached from a study of the laser-induced 

decomposition of 1.^ One of the mechanisms proposed^^ for the thermal decomposition 

of 1 to 2 involves cleavage of the weak benzylic carbon-carbon bond to form diradical 3 

followed by loss of ethylene from 3 to form o-xylylene (4) which is known to 

CO-CC,,.^CC-Cd 
1 3  4  2  

close to 2 at high temperatures.^ From our study of the pyrolysis of ketone 5 and 

sulfone 6,^ we have concluded that diradical 3 is produced by both of these compounds. 

The results show, however, that the major reactions of 3 are coupling to form 1 and 

disproportionation to form o-allyltoluene (7). Little or no cleavage of the J3 carbon-car-

c o - ' - ' - c a  
5 X = CO 7 
6 X = SOg 

bon bond of diradical 3 to form 4 and subsequently 2 is observed. 

Cleavage of the J3 carbon-carbon bond in alkyl radicals is common.^ but this 

does not seem to be a favorable reaction for diradical 3. It Is conceivable that under 

high-temperature gas-phase pyrolysis conditions that a 3-arylpropyl radical losses a J3 

hydrogen atom or undergoes cyclization in preference to cleavage of the J3 carbon-car­

bon bond. In order to determine the fate of a simple arylpropyl radical under these 
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conditions, we have studied the products of the 3-phenylpropyl radical (8) produced by 

PhCH2CH2CH2CH2Ph > PhCH2CH2CH2» + •CH2Ph (1) 
9 8 

the pyrolysis of 1,4-diphenylbutane (9). The results of this study are reported in this 

paper. 
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RESULTS 

FVP of 9 at 10"^ torr (700-900 °C) produces 1,2-diphenylethane (10) as the major 

product (Table I). At higher temperatures (850-900 °C), ca. 10% toluene (11) is formed. 

Small amounts (<2.5%) of indan (12), styrene (13). ethylbenzene (14), allylbenzene (15), 

butylbenzene (19), and diphenylmethane (20) are also produced. 
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Table I. Products and recovered starting material from the FVP of 1,4-diphenyl-
butane (9) at various oven temperatures 

yield. % 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

1,4-diphenylbutane (9) 98.2 91.1 65.7 23.4 7.1 

1,2-diphenylethane (10) 1.6 7.8 30.4 62.9 71.9 

toluene (11) — 0.1 0.8 6.4 11.2 

indan (12) — 0.1 0.8 1.9 2.2 

styrene (13) — 0.1 0.6 1.9 2.3 

ethylbenzene (14) — — 0.1 0.7 1.5 

allylbenzene (15) — — 0.2 0.4 0.4 

butylbenzene (19) 0.1 0.2 0.4 0.4 0.5 

diphenylmethane (20) — <0.1 0.3 0.8 

other products — 0.6 1.1 d 1.7 ^ 2.2 ^ 

recovery ® 98.9 98.6 96.4 94.0 85.5 

conversion S 1.8 8.9 34.3 76.6 92.9 

^ FVP conditions; system pressure = 2 x 10"^ torr, sample temperature = RT. 

^ Amounts determined by GC with a known quantity of triphenylmethane added as 

standard. Data represent the average of triplicate runs. ^ Moles of product divided by 

total moles of recovered material. See Table A-I in the Appendix of Paper 3, this 
dissertation, for a more detailed analysis. ® Total moles of recovered material divided 

by moles of starting material used. /Total moles of recovered material minus moles of 

recovered starting material divided by total moles of recovered material. 
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DISCUSSION 

The major product from the FVP of 9, 1,2-diphenylethane (10), is consistent with 

the expected mechanism: cleavage of the benzylic carbon-carbon bond to form a benzyl 

radical and S (eq 1) followed by the loss of ethylene from 8 to form another benzyl 

8 > CH2=CH2 + •CH2Ph (2) 

radical (eq 2). Benzyl radicals produced under these conditions couple to form 10 (eq 3).® 

2 PhCH2« > PhCH2CH2Ph (3) 
10 

The production of indan (12) supports the formation of 8 (eq 4) and the low yield of 12 

CO 8 >11 ^ + H. (4) 

12 

shows that under these conditions cleavage of the J3 carbon-carbon bond of 8 is favored 

over cyclization. Loss of a J3 hydrogen atom from 8 could account for the production of 

allylbenzene (15) (eq 5) but 15 could also arise from radical induced decomposition of 9 

8 > PhCH2CH=CH2 + H» 
15 

as discussed below. The low yield of 15, whatever its source, means that cleavage of the J3 

carbon-carbon bond is much more important than J3 carbon-hydrogen bond cleavage. 

In liquid-phase studies of the decomposition of 9,^-^ radical chain reactions 

account for the decomposition products. The reaction of a benzyl radical with 9 leads to 

the formation of radical 16 or 17 (eq 6,7). Radical 16 decomposes to the 2-phenylethyl 

9 + PhCH2« > PhCHCH2CH2CH2Ph + PhCHg (6) 
16 11 

9 + PhCH2» > PhCH2CHCH2CH2Ph +11 (7) 
17 
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radical (18) and styrene (13) (eq 8) and radical 17 fragments to benzyl radical and 

1 6 > PhCH=CH2 + •CH2CH2Ph (8) 
13 18 

allylbenzene (15) (eq 9). Abstraction of a hydrogen atom from 9 by a benzyl radical 

1 7 > PhCH2CH=CH2 + •CH2Ph (9) 
IS 

forms toluene (11) and radical 16 or 17 (eq 6, 7) and abstraction of a hydrogen atom 

from 9 by radical 18 forms ethylbenzene (14) and radical 16 or 17 (eq 10). 

18 + 9 > 16 + 17 + CH3CH2PH (10) 
14 

Two other minor products are butylbenzene (19) and diphenylmethane (20). A 

reasonable pathway to these products is addition of a benzyl radical to a phenyl ring of 

9 to form radical 21 followed by decomposition of radical 21 to the 4-phenylbutyl 

radical (22) and 20 (eq 11). Abstraction of a hydrogen atom by radical 22 from 9 gives 

19 and radical 16 or 17 (eq 12). 
PhCHg /=\ 

9 + PhCH2' > V \ > Ph(CH2)3CH2» + PhCH2Ph (11) 
Ph(CH2)/y_/ 

21 22 20 

9 + 22 > PHCH2CH2CH2CH3 + 16+17 (12) 
19 

The detection of increasing amounts of 11 with higher pyrolysis temperatures 

and the observation of minor products 13, 14, 19, and 20 indicate some induced 

decomposition of 9 is occurring. However, these reactions occur to a significant extent 

only at high conversion where a high concentration of benzyl radicals is expected. 



www.manaraa.com

132 

CONCLUSION 

In conclusion, our results show that the major reaction of the 3-phenylpropyl 

radicals (8) in the gas-phase at high temperature is cleavage of the J3 carbon-carbon 

bond to produce ethylene and benzyl radical: loss of a J3 hydrogen atom to form 

allylbenzene (15) and cyclization to form indan (12) are minor reactions under these 

conditions. Thus, the small amount of J3 carbon-carbon bond cleavage of diradical 3 

appears to be characteristic of that system, rather than a consequence of the method of 

generation. Apparently for diradical 3, the two reactions which involve interaction of the 

two radical sites, coupling to form 1 and disproportionation to form 7, are much faster 

than J3 carbon-carbon bond cleavage. 
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EXPERIMENTAL 

General Procedures 

Methods and materials 

Some general methods have been described previously.® NMR spectra were 

recorded on a NIcolet NT-300 spectrometer. GCMS were performed on a Firmegan 4000 

mass spectrometer. All materials were commercially available and used as received, 

except where indicated. 

1,4-Diphenylbutane (9) 1.4-Diphenylbutane was prepared as previously 

described.Ga mp 51-53 °C; NMR {CDCI3) S 7.30-7.12 (m. 10 H). 2.68-2.57 (m. 4 H), 

1.74-1.62 (m. 4 H) |lit.9 1H NMR 5 7.05 (s. 5 H). 2.60 (m, 2 H). 1.65 (m, 2 H)]; GCMS (El. 

70 eV) m/e (% base peak) 210 (32.4). 92 (53.1), 91 (100) [lit.9 GCMS (El, 70 eV) m/e (% 

base peak) 210 (27.5), 92 (57), 91 (100)]. 

Flash vacuum pyrolysis Flash vacuum pyrolysis (FVP) was performed as 

previously described. 

Product analysis FVP reaction mixtures were analyzed by capillary gas 

chromatography on a Hewlett-Packard HP5840A gas chromatograph equipped with a 

30-m (0.25-pim film thickness) DB-1701 capillary column using the analytical procedure 

previously described. ̂  
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SUPPLEMENTARY DATA TABLE 

Table A-I. Products and recovered starting material, total recovery of material, and 
conversion from the FVP of 1,4-dlphenylbutane (9) at various oven tem­
peratures 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

toluene (11) — 0.08 0.75 6.38 11.16 

ethylbenzene (14) — — 0.08 0.71 1.46 

styrene (13) — 0.10 0.56 1.87 2.33 

allylbenzene (15) — — 0.15 0.39 0.43 

butylbenzene (19) 0.13 0.23 0.35 0.41 0.46 

Indan (12) — 0.13 0.79 1.94 2.15 

indene — — 0.06 0.11 0.18 

BA — 
d d d d 

dlphenylmethane (20) — — 0.04 0.28 0.76 

1,2-dlphenylethane (10) 1.63 7.82 30.44 62.93 71.86 

BB — — 
e e e 

BC — — — — 
d 

BD d d d d 

BE — — — 
d 

1,4-diphenylbutane (9) 98.24 91.09 65.73 23.43 7.13 

BF — 
d d d 

Table A-I continues on next page 
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Table A I. Continued 

yield, % ^ 

entry 700 °C 750 °C 800 °C 850 °C 900 °C 

BG-196 (CisHiel — 0.06 0.32 0.32 0.40 

BH-196 ICisHiel — — 0.09 0.08 0.11 

BI-196 [C15H16I — 0.06 0.25 0.19 0.30 

BJ — — 
d 

— 

BK — — — 
d 

—— 

BL — 
d d 

— 
d 

BM — — 
d d 

BN-272 [C21H20I — 0.10 0.11 0.26 0.29 

BO — — — — 
d 

BP — — — — 
d 

BQ-272 [C21H20I — 0.08 — 0.08 0.13 

BR-272 IC21H20I — 0.26 0.28 0.62 0.84 

recovery f 98.94 98.55 96.36 94.01 85.47 

conversion 9 1.76 8.91 34.27 76.57 92.87 

^ FVP conditions: system pressure = 2 x 10'® torr, sample temperature = RT. 

^ Amounts determined by GC with a known quantity of triphenylmethane added as 
standard. Data represent the average of triplicate runs. Products identified by 

comparison with authentic samples or those that could be identified by retention time 
and GCMS are indicated by name. Products that were identified by GCMS only are 

indicated by code: XY-nnn, where 'X' corresponds to the system studied (B = pyrolysis 

of 9), T to the individual unknown product (A, B, C, etc.), and 'nnn' to the nominal 

mass. ^ Moles of product divided by total moles of recovered material. ^ Product which 
constitutes <0.30% total area by GC. ® Product which constitutes between 0.35% to 

0.90% total area by GC. /Total moles of recovered material divided by moles of starting 

material used. 9 Total moles of recovered material minus moles of recovered starting 

material divided by total moles of recovered material. 
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PAPER 5. THE FLASH VACUUM PYROLYSIS OF 

O-ALLYLTOLUENE, 

0-(3-BUTENYL)TOLUENE AND 0-(4-PENTENYL)TOLUENE 
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INTRODUCTION 

In our study of the gas-phase decomposition of tetralin (1),1 flow pyrolysis was 

used to limit bimolecular and heterogeneous surface reactions. Under these conditions, 

we found that o-allyltoluene (4) was one of the primary decomposition products, with 

1,2-dlhydronaphthalene (2) and benzocyclobutene (3). It was previously known (Scheme 

I) that, at higher temperatures, 2 would be converted to naphthalene (5) and 3 to sty-

rene (6). The fate of 4 had not been previously explored. We pyrolyzed 4 under flow 

conditions and found that 2-methyllndan (7) was formed and that 7 could be further 

pyrolyzed to indene (8) at higher temperatures. 

Scheme I 

3 6 
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In this study, we have examined the flash vacuum pyrolysis (FVP) of 4 in order to 

determine if the conversion to 7 and 8 will occur under standard FVP conditions. The 

FVP of two homologous compounds, o-(3-butenyl)toluene (9) and o-(4-pentenyl)toluene 

9 10 

(10), was also studied for comparison purposes. 
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RESULTS 

The results of the FVP of o-allyltoluene (4) at 0.10 toir (700-900 °C) are presented 

in Table I. The major products are 2-methylindan (7) and indene (8). Small amounts 

(<4%) of tetralin (1), 1,2-dihydronaphthalene (2), and naphthalene (5) are also produced 

at 700-800 °C. At 900 °C. ca. 8% 5 is formed. 

The FVP of o-(3-butenyl)toluene (9) under similar conditions produces 

1,2-di(o-tolyl)ethane (11) in good yield (ca. 40%) at 700-800 °C. At 900 °C, significant 

amounts (ca. 10-20%) of o-xylene (12), benzocyclobutene (3), o-ethyltoluene (13), and 

styrene (6) are formed. 

The FVP of o-(4-pentenyl)toluene (10) results in the formation of o-methylstyrene 

(14). Numerous side products, each produced in small amounts, were detected at high 

conversion (900 °C). These results are presented in Table III. 
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Table I. Products and recovered starting material from the FVP of o-allyltoluene 
(4) at various oven temperatures 

yield, % ^ 

entry 700 °C 800 °C 900 °C 

o-allyltoluene (4) ^ 90.9 45.4 6.6 

2-methylindan (7) 4.1 25.3 14.1 

indene (8) 0.8 6.9 32.0 

tetralin (1) 0.3 2.7 3.3 

1,2-dihydronaphthalene (2) 0.6 1.4 1.1 

naphthalene (5) — 1.0 8.1 

other products 3.3 « 17.3 6 34.9 6 

recovery f 83.3 88.8 72.8 

conversion 9 9.1 54.6 93.4 

FVP conditions: system pressure = 0.10 torr, sample temperature = 0 °C. 

^ Amounts determined by GC with a known quantity of biphenyl added as standard. 

Data represent the average of triplicate runs. ^ Moles of product divided by total moles 
of recovered material. Starting material (yield, %); o-allyltoluene (96.5), m/p-allyltol-
uene (1.9), toluene (0.6), unidentified product TL-128 with formula CioHg (0.4), naph­

thalene (0.4), 2,2'-dimethylbiphenyl (0.2). ® See Table A-I in the Appendix of Paper 5, 

this dissertation, for a more detailed analysis. /Total moles of recovered material 

divided by moles of starting material used. 9 Total moles of recovered material minus 
moles of recovered starting material divided by total moles of recovered material. 
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Table II. Products and recovered starting material from the FVP of 
yl)toluene (9) at various oven temperatures 

o-(3-buten-

yield, % ^ 

entry 700 °C 800 "C 900 °C 

o-(3-butenyl)toluene (9) 64.2 41.7 15.9 

l,2-di(o-tolyl)ethane (11) 34.4 39.4 7.6 

o-xylene (12) 0.4 4.7 18.6 

benzocyclobutene (3) 0.4 3.5 15.2 

o-ethyltoluene (13) — 3.0 10.4 

styrene (6) — 0.5 6.8 

other products 0.6® 7.3 6 25.5 G 

recovery f 97.8 88.7 110.0 

conversion 9 35.8 58.3 84.1 

^ FVP conditions: system pressure = 0.010 torr, sample temperature = 0 °C. ^ See 
Table I, footnote b. ^ See Table I, footnote c. Starting material (yield, %): o-(3-buten-

yl)toluene (100.0). ® See Table A-II in the Appendix of Paper 5, this dissertation, for a 

more detailed analysis. /See Table I, footnote f. 9 See Table I. footnote g. 
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Table III. Products and recovered starting material from the FVP of o-(4-penten-
yUtoluene (10) at various oven temperatures 

yield, % ^ 

entry 600 °C 700 °C 800 °C 

o-(4-pentenyl)toluene (10) 90.4 52.9 3.0 

o-methylstyrene (14) 1.5 30.6 59.8 

other products 8.1 6 16.5 G 37.0 e 

recovery f 96.2 86.6 70.4 

conversion 9 9.6 47.1 97.0 

^ FVP conditions: see Table II, footnote a. ^ See Table I. footnote b. ^ See Table I, 
footnote c. Starting material (yield, %): o-(4-pentenyl)toluene (92.4), 2,2'-dimethylbi-

phenyl (7.6), unidentified impurity PC which constitutes <0.35% total area by GC. 
® See Table A-III in the Appendix of Paper 5, this dissertation, for a more detailed 

analysis. /See Table I, footnote J. 9 See Table I, footnote g. 
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DISCUSSION 

FVP of o-allyltoluene (4) clearly results in the formation of 2-methylindan (7), 

which then furtlier decomposes to indene (8). Even at 900 °C, 4, 7 and 8 constitute over 

50% of the products. These FVP results are similar to the flow pyrolysis results obtained 

earlier. 1 However, the FVP of 4 results in the formation of more side products at high 

temperature than flow pyrolysis. 

We propose that 7 is produced by a two-step mechanism involving diradical 15 

formed by an intramolecular hydrogen atom transfer. Although there are examples of 

the formation of hydrocarbon radicals by intramolecular hydrogen atom transfers,^ 

we are not aware of any Intramolecular examples of this reaction. The calculated'^ 

enthalpies of formation of radicals 4 and 15 have a AH° of 45 kcal mol" ^. This indicates 

that the conversion of 4 to 7 Is reasonable at FVP temperatures >700 °C. 

Conversion of 2-methylindan (7) to indene (8) at higher temperatures is readily 

explained by the loss of a methyl group form 7 to form the 2-indanyl radical which 

would rapidly lose a J3 hydrogen atom to give 8.^ 

The FVP of 4 also gives some tetralin (1) and this may arise from the 

1,6-diradical (16) produced by a hydrogen atom transfer reaction to the internal olefinic 

4 15 7 

RH + R'H > R. + R'H2 

4 16 1 
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carbon atom. The 1,2-dihydronaphthalene (2). naphthalene (5). and other products may 

simply be products of the secondary pyrolysis of 1. 

In the FVP of o-(3-butenyl)toluene (9), the main reaction is homolytic cleavage of 

the weak benzylic-allylic carbon-carbon bond (Table II). The dimerization of o-methyl-

benzyl radicals (17), produced from this bond cleavage, results in the formation of 

l,2-di(o-tolyl)ethane (11). The allyl radicals (18) should dimerize to form 1,5-hexadiene 

'CH3 

— -  f X  +  
CHa-

17 18 

17 IS 

a:_:n CHa—CHa 

11 19 

(19), however, this product was not detected due to its high volatility. At 900 °C, the 

major products are o-xylene (12), benzocyclobutene (3), o-ethyltoluene (13), and styrene 

(6). These products all appear to be formed from 17. 

The results of the pyrolysis of o-(4-pentenyl)toluene (10) are presented in Table 

III. The main product from the pyrolysis of o-(4-pentenyl)toluene (10) is o-methylstyrene 

(14) formed by a retro-ene reaction. Numerous minor side products are formed at high 

temperature (800 °C). 

•H 

10 14 
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The AH* for the conversion of 4 to 7 and 8 (Table I) was estimated from the FVP 

data for 9 (Table II) and 10 (Table III) by the method of Schiess.^ The 50% conversion 

temperature (T 50%) was determined for 4, 9 and 10 from a linear least squares line of a 

temperature vs. conversion plot (Figure 1, Table IV). The AH* for the homolytic bond 

cleavage of 9 was calculated'^ (AH* «= AH°) and the AH* for the retro-ene reaction of 10 

was estimated from the previously studied retro-ene reaction of 1,6-heptadiene^ (Table 

IV). In this way, the AH* for the conversion of 4 to 7 and 8 was estimated to be ca. 64 

kcal mol'l (Table IV). 

1000-1 

U I 800-

I • 
700-

900-

600 

O 9 

• 4 

O 10 

0 25 50 75 100 

Conversion (%) 

Figure 1. Plot of temperature vs. conversion for the FVP of o-allyltoluene (4), 
o-(3-butenyl)toluene (9), and o-(4-pentenyl)toluene (10) (system pressure, 
0.10-0.010 torr; sample temperature, 0 °C) 
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Table IV. Linear least squares line for temperature vs. conversion and AH^ for the 
FVP of o-allyltoluene (4), o-(3-butenyl)toluene (9), and o-(4-pentenyl)tolu-
ene (10) 

linear least squares line 

temperature vs. conversion 

slope, y-intercept, r2 T 50%. AH*, 

entry °c °C °C kcal mol" ̂  

o-allyltoluene (4) 2.37 677 0.998 796 64 

o-(3-butenyl)toluene (9) 4.13 559 0.995 765 58.4 b 

o-(4-pentenyl)toluene (10) 2.12 598 0.993 704 47.5 c 

^ Estimated from the FVP data of 9 and 10 (ref 6). ^ Calculated (ref 4). ^ Estimated 
from AH^ of retro-ene reaction of 1,6-heptadiene (45.6 kcal mol" ̂ , ref 7) adjusted for 

the decreased thermodynamic stability of 10 (1.9 kcal mol"^, ref 4). 
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CONCLUSION 

We have observed the conversion of o-allyltoluene (4) to 2-methylindan (7) and 

indene (8) under both FVP and flow pyrolysis conditions. We believe the 4 to 7 reaction 

involves intramolecular benzylic hydrogen atom transfer to the double bond to form 

diradical 15. The calculated AH° for this reaction is 45 kcal mol" ^. We have also 

pyrolyzed o-(3-butenyl)toluene (9) which undergoes homolytic bond cleavage and 

o-(4-pentenyl)toluene (10) which forms o-methylstyrene (14) through a retro-ene 

reaction. From the AH* of these reactions, we estimate the AH* for the 4 to 7 conversion 

is 65 kcal mol'l. 
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EXPERIMENTAL 

General Procedures 

Methods and materials 

Some general methods have been described previously.® NMR spectra were 

recorded on a Nicolet NT-300 spectrometer. FTIR spectra were obtained on an IBM 

IR/98 spectrophotometer. GCMS were performed on a Finnegan 4000 mass spectrome­

ter. HRMS were performed on a Kratos MS-50 mass spectrometer. All materials were 

commercially available and used as received, except where indicated. 

o-Allyltoluene (4) o-AlIyltoluene (4) was prepared by previously published 

procedure.9 Ir NMR (CDCI3) S 7.12 (s. 4 H), 5.94 (qt. Jq = 10.3 Hz. Jt = 6.4 Hz. 1 H). 5.04 

(dq. Jd = 10.1 Hz. Jq = 1.6 Hz. 1 H), 4.98 (dq, Jd = 17.0 Hz. Jq = 1.7 Hz. 1 H). 3.36 (dt. Jd = 

6.3 Hz. Jt = 1.6 Hz. 1 H). 2.28 (s. 3 H) [lit. 10b 1h NMR (CCI4) 5 6.94 (s. 4 H). 5.79 (qt. Jq = 

11.3 Hz. Jt = 6.5 Hz. 1 H). 4.93 (m. 1 H). 4.79 (dq. Jd = 11.3 Hz. Jq= 2.1 Hz. 1 H). 3.24 (dt. 

Jd = 6.0 Hz. Jt = 1.8 Hz, 2 H). 2.20 (s. 3H)1: GCMS (70 eV) m/e (% base peak) 132 (77.5). 

117 (100). 115 (42.3), 91 (35.6). 65 (31.6) [lit.^b MS (50 eV) m/e 132 (parent). 117 (base)]. 

o-(3-Butenyl)toluene (9) Allylmagnesium bromide (25 mL. 1.0 M solution 

in ether. 0.025 mol) was added dropwise to a solution of a-chloro-o-xylene (3.5 g. 0.025 

mol. ca. 3.3 mL) in ether (15 mL) at 0 °C. The reaction mixture was stirred at room 

temperature for 1 h. quenched with H2O (50 mL). and the phases separated. The 

aqueous phase was extracted with ether (3 x 50 mL). The combined orgzmic phases were 

washed with H2O (2 x 50 mL) and saturated NaCl (50 mL). dried (MgSO^,), and the 

solvent removed in vacuo. HPLC purification 1 yielded.o-(3-butenyl)toluene (1.9 g. 0.013 

mol. 64% yield). ^H NMR (CDCI3) ô 7.17-7.07 (m. 4 H). 5.84 (qt. Jq = 10.2 Hz. Jt = 6.6 Hz, 

1 H), 5.04 (dq. Jd = 17.1 Hz. Jq = 1.5 Hz. 1 H). 4.98 (ddt. Jd = 10.2 Hz. Jd = 1.8 Hz. Jt = 1.2 
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Hz. 1 H). 2.73-2.65 (m. 2 H). 2.37-2.27 (m, J= 7 Hz. 2 H). 2.31 (s, 3 H); GCMS (70 eV) m/e 

(% base peak) 160 (16.4), 118 (78.4), 106 (33.8), 105 (100), 91 (40.7), 77 (26.7). 

o-(4-Pentenyl)toluene (10) The following modified literature procedure^ ^ 

was used. Crushed Mg turnings (0.36 g, 0.015 mol) were added to THF (55 mL) under Ar 

atmosphere. 2-Bromotoluene (2.3 g, 0.013 mol, ca. 1.6 mL) was added and the mixture 

was stirred overnight. 5-Bromo-l-pentene (2.0 g, 0.013 mol, ca. 1.6 mL) and CuBr (0.096 

g, 0.67 mmol) in HMPA (5 mL) were heated to 50-60 °C for one-half h. The Grignard 

reagent was transferred to an addition funnel and added dropwise to the warm HMPA 

solution. After the addition was complete, the reaction mixture was refluxed for 2 h, 

added to a mixture of ice and 1 M HCl in a beaker, and extracted with ether (3 x 50 mL). 

The combined ether fractions were washed with H2O (50 mL), saturated NaCl (50 mL), 

dried (MgS04), and the solvent removed in vacuo. Flash column chromatography on a 

silica gel column (30 x 100 mm) with hexanes yielded o-(4-pentenyl)toluene (0.87 g, 5.4 

mmol, 40 % yield). ^H NMR (CDCI3) 5 7.15-7.05 (m, 4 H), 5.85 (qt, Jq = 10.2 Hz, Jt = 6.7 

Hz, 1 H), 5.04 (dq, = 17.1 Hz, Jq = 1.7 Hz, 1 H), 4.98 (ddt, jy = 10.2 Hz, = 2.2 Hz, Jt = 

1.2 Hz, 1 H), 2.64-2.55 (m. 2 H), 2.30 (s, 3 H), 2.19-2.11 (m. 2 H), 1.71-1.65 (m, 2 H) [lit. 12 

1H NMR (CDCI3) S 7.08 (4 H), 5.88 (1 H), 5.05 (2 H). 2.60 (2 H), 2.28 (3 H), 2.6-1.3 (4 H)]; 

GCMS (70 eV) m/e (% base peak) 160 (16.4), 118 (78.4), 106 (33.8), 105 (100), 91 (40.7), 77 

(26.7). 

Flash vacuum pyrolysis Flash vacuum pyrolysis (FVP) was performed as 

previously described. 

Product analysis FVP reaction mixtures were analyzed by capillary gas 

chromatography on a Hewlett-Packard HP5840A gas chromatograph equipped with a 

30-m (0.25-|im film thickness) DB-1701 capillary column using the analytical procedure 

previously described. ̂  
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APPENDIX 

SUPPLEMENTARY DATA TABLES 

Table A-I. Products and recovered starting material, total recovery of material, 
and conversion from the FVP of o-allyltoluene (4) at various oven 
temperatures 

yield, % ^ 

entry KT" O
 

O
 

802 °C 901 °C 

toluene 0.57 — 1.05 3.03 

ethylbenzene — — 0.55 1.92 

m/p-xylene — — 0.51 0.18 

o-xylene (12) — — 0.23 1.92 

styrene (6) — — 0.75 3.45 

benzocyclobutene (3) — — 0.35 1.19 

allylbenzene — — — 0.26 

propylbenzene — — — 0.12 

o-ethyltoluene (13) — — 1.46 0.94 

AA-118 [CgHiol — — 0.09 

o-methylstyrene (14) — 1.02 3.18 5.52 

AB-118 [CgHiol — — — 0.29 

benzaldehyde — — — 0.17 

indan — — — 0.68 

trans-J3-methylstyrene — — — 0.11 

m/p-allyltoluene 1.94 1.97 1.76 0.79 

Table A-I continues on next page 
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Table A-I. Continued 

yield. % ^ 

entry RT^ 701 °C 802 °C 901 »C 

o-allyltoluene (4) 96.47 90.94 45.35 6.56 

indene (8) — 0.83 6.86 31.98 

2-methylindan (7) — 4.09 25.34 14.08 

1-methylindan — — 1.43 0.60 

TD-130 [CioHiol — — 0.14 0.92 

TE-130 [CioHiol — — — 0.11 

o-methylbenzaldehyde — — 0.28 0.15 

o-( 1 -propenyl) toluene — — 3.05 3.68 

TH-130 [CioHiol — — — 0.18 

3-methyl- IH-indene — — 0.72 3.47 

tetralin (1) — 0.32 2.74 3.28 

2-methyl-IH-lndene — — 0.42 0.73 

TK-130 [CioHioI — — 1.20 2.43 

1,2-dihydronaphthalene (2) — 0.55 1.42 1.10 

TL-128 [CioHsl 0.40 — — 0.98 

naphthalene (5) 0.39 — 0.96 8.10 

TN — — — 
e 

TO-148 [CiiHiel — — — 0.10 

2 -methylnaphthalene — — — 0.17 

1 -methylnaphthalene — — — 0.24 

2,2'-dimethylbiphenyl 0.24 0.27 0.25 0.39 

AC-182 [C14H14] — — — 0.10 

Table A-I continues on next page 
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Table A I. Continued 

yield, % c 

entry KT^ 701 °C 802 °C 901 °C 

recovery / 94.62 83.28 88.78 72.79 

conversion 9 d 9.06 54.65 93.44 

FVP conditions: system pressure = 0.10 torr, sample temperature = 0 °C. 

^ Amounts determined by GC with a known quantity of biphenyl added as standard. 

Data represent the average of triplicate runs. Products identified by comparison with 
authentic samples or those that could be identified by retention time and GCMS are 

indicated by name. Products that were identified by GCMS only are indicated by code; 
XY-rmn, where 'X' corresponds to the system studied (A = pyrolysis of 4, T = pyrolysis 

of 1), T to the individual unknown product (A, B, C, etc.), and 'nnn' to the nominal 

mass. ^ Moles of product divided by total moles of recovered material. ^ Starting 

material purity assay. ® Unidentified product which constitutes <0.25% total area by 
GC. y Total moles of recovered material divided by moles of starting material used. 

9 Total moles of recovered material minus moles of recovered starting material divided 
by total moles of recovered material. 
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Table A-II. Products and recovered starting material, total recovery of material, 
and conversion from the FVP of o-(3-butenyl)toluene (9) at various oven 
temperatures 

yield, % ^ 

entry RT " 702 °C 808 °C 902 °C 

toluene — — — 2.29 

ethylbenzene — — — 1.59 

m/p-xylene — — — 0.75 

o-xylene (12) — 0.40 4.70 18.58 

styrene (6) — — 0.46 6.80 

benzocyclobutene (3) — 0.36 3.51 15.24 

allylbenzene — — — 0.23 

propylbenzene — — — 0.32 

o-ethyltoluene (13) — — 2.97 10.37 

o-methylstyrene (14) — — 0.51 2.14 

indan — — — 0.13 

m/p-allyltoluene — — 0.95 3.83 

o-allyltoluene (4) — — 0.21 0.40 

HA _ _ e _ 

indene (8) — — 0.34 1.64 

2-methylindan (7) — — — 0.22 

o-methylbenzaldehyde — 0.33 0.39 0.21 

o- ( 1 - propenyl) toluene — — — 0.15 

HB-146 lCiiHi4l — — 0.16 0.43 

HC-146IC11H14I — — 0.16 0.22 

o-(3-butenyl)toluene (9) 100.0 64.20 41.73 15.87 

Table A-II continues on next page 
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Table A-II. Continued 

yield, % ^ 

entry Krd 702 °C 808 °C 902 °C 

HD-146 ICiiHi4l 0.32 0.25 0.12 

2-methyl- IH-indene — — 0.23 0.10 

TK-130 [CioHiol — — — 0.14 

1,2-dIhydronaphthalene (2) — — 0.30 0.30 

TM — — 
e e 

naphthalene (5) — — 0.45 1.38 

HE-146 [C11H14] — — 0.20 0.12 

HP-156 [C12H12I — — — 0.20 

2-methylnaphthalene — — — 0.10 

1 -methylnaphthalene — — — 0.18 

HG-182 [C14H14I — — — 0.46 

HH-182 [C14H14I — — — 0.47 

HI-196 (C15H16I — — — 0.29 

HJ-196 [C15H16] — — 2.15 4.24 

HK-210 [CieHisl — — 0.37 0.49 

l,2-di(o-tolyl)ethane (11) — 34.38 39.36 7.59 

HI^178 [C14H10I — — 0.63 1.46 

HM-208 [CieHiel — — — 0.46 

HN-192 [C15H12] — — — 0.47 

recoveiy f 102.4 97.77 88.72 110.0 

conversion 9 d 35.80 58.27 84.13 

Table A-II footnote on next page 
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Table A-II. Footnote 

^ FVP conditions: system pressure = 0.010 torr, sample temperature = 0 °C. 

^ Amounts determined by GC with a known quantity of biphenyl added as standard. 
Data represent the average of triplicate runs. Products identified by comparison with 

authentic samples or those that could be identified by retention time and GCMS are 

indicated by name. Products that were identified by GCMS only are indicated by code: 

XY-nnn, where 'X' corresponds to the system studied (H = pyrolysis of 9, T = pyrolysis 
of 1), T to the individual unknown product (A, B, C, etc.), and 'nnn' to the nominal 

mass. ^ See Table A-I, footnote c. ^ See Table A-I, footnote d. ® See Table A-I, footnote 
e. f See Table A-I, footnote/ 9 See Table A-I, footnote g. 
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Table Am. Products and recovered starting material, total recovery of material, 
and conversion from the FVP of o-(4-pentenyl)toluene (10) at various 
oven temperatures 

yield, % ^ 

PC 

entry RT " 613 °C 707 °C 800 °C 

toluene — — 0.26 3.24 

ethylbenzene — — — 1.32 

o-xylene (12) — — 1.00 5.65 

styrene (6) — — — 2.54 

benzocyclobutene (3) — — 0.92 3.24 

o-ethyltoluene (13) — 0.88 3.15 

o-methylstyrene (14) — 1.52 30.62 59.78 

benzaldehyde — — 0.21 1.33 

indan — — — 1.07 

m/p-allyltoluene — 0.31 0.26 0.51 

o-allyltoluene (4) — — 0.20 — 

indene (8) — — 0.34 2.29 

o-methylbenzaldehyde — — 1.67 2.56 

PA _ _ e _ 

PB-146 [C11H14] — — 0.82 0.98 

naphthalene (5) — — 0.11 0.52 

e 

PD _ _ e _ 

2-(4-pentenyl)toluene (10) 92.42 90.40 52.92 2.97 

PE-160 [C12H16I — — 0.58 0.52 

PF — e — 

Table A-in continues on next page 
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Table A-in. Continued 

yield, % ^ 

entry KTcl 613 °C 707 °C 800 °C 

PG-160 [C12H16I — — 0.97 1.10 

2,2'-dimethylbiphenyl 7.58 7.77 8.23 7.22 

recovery ® 97.85 96.20 86.59 70.36 

conversion f d 9.60 47.08 97.03 

^ See Table A-II, footnote a. ^ Amounts determined by GC with a known quantity of 
biphenyl added as standard. Data represent the average of triplicate runs. Products 

identified by comparison with authentic samples or those that could be identified by 
retention time and GCMS are indicated by name. Products that were identified by 

GCMS only are indicated by code: XY-nnn, where 'X' corresponds to the system 

studied (P = pyrolysis of 10). T to the individual unknown product (A, B, C, etc.). and 

'nrm' to the nominal mass. ^ See Table A-I, footnote c. ^ See Table A-I, footnote d. 
® Unidentified product which constitutes <0.35% total area by GC. /See Table A-I, 

footnote/. 9 See Table A-I, footnote g. 
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GENERAL SUMMARY 

In the gas-phase thermal decomposition studies of tetralin (1) found in paper 1, 

the relative amounts of dehydrogenation products, 1,2-dihydronaphthalene (2) and 

naphthalene (5), to ethylene loss products, benzocyclobutene (3) and styrene (6). vary 

with the conditions of the experiment. The multiphoton dissociation (MPD) of 1 

produces mostly ethylene loss while the pulsed and continuous wave (cw) 

laser-sensitized decomposition of 1 produces mostly dehydrogenation. The relative 

amounts of dehydrogenation to ethylene loss in the flash vacuum pyrolysis (FVP) of 1 

are dependent on the system pressure and the sample temperature. In the FVP of 1 at 

10'^ torr, the ratio of dehydrogenation to ethylene loss remains ca. 1 (0.90-1.03) from 

850 to 950 °C and finally drops to 0.73 at 1000 °C. On the other hand, when 1 is 

pyrolyzed at 0.10 torr a distinct drop in the dehydrogenation to ethylene loss ratio, from 

2.70 to 0.72, with increasing pyrolysis temperature is observed. High sample 

temperature increases the proportion of dehydrogenation. When 1 is pyrolyzed under 

flow conditions, where sample molecules are diluted with a large excess of Ar, ethylene 

loss exceeds dehydrogenation by a ratio of between 3 and 5 to 1 over a wide temperature 

and conversion range. These flow experiments show that the lowest energy 

unimolecular gas-phase decomposition channel for 1 is ethylene loss. A bimolecular 

dehydrogenation reaction, possibly a hydrogen atom chain, is responsible for greater 

amounts of hydrogen-loss products observed under some conditions in the 

decomposition of 1. In none of our pyrolysis experiments, whether laser-induced or 

under standard pyrolysis conditions, did we find any evidence of heterogeneous catalytic 

reactions on surfaces. We can conclude that MPD favors the lowest energy unimolecular 
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decomposition channel while laser-sensitized pyrolysis (cw or pulsed) can lead to 

homogenous bimolecular reactions as well. 

We have observed the facile transformation of o-allyltoluene (4) to 2-methylindan 

(7), which we propose occurs through an intramolecular hydrogen atom transfer from 

the benzylic methyl group to the double bond of 4. Loss of a methyl from 7 leads to the 

formation of indene (8). We have identified the transformation 4 to 7 to 8 as the major 

source of 8 in the gas-phase thermal decomposition of 1. 

Paper 2 shows that the FVP of 3-benzocycloheptenone (10') leads to the forma­

tion of tetralin (1), 1,2-dihydronaphthalene (2), naphthalene (5), indene (8), 1-methyl-

naphthalene (12'). 2-methylnaphthalene (13'). and several other minor products. The 

results from the flow pyrolysis of 10' are similar. An unusual aspect of the pyrolysis of 

10' is the formation of 12' and 13', products formed by a net loss of water from ketone 

10'. The photolysis of 10' at 25 °C in solution gives mostly 1 and some o-allyltoluene 

(4). In contrast to the pyrolysis of 10', FVP of 1.3.4.5-tetrahydro-2-benzothiepin-2.2-di­

oxide (11') leads to the formation of large amounts of 1 and some 4 with only small 

amounts of other products. It is concluded that the 1,6-diradIcal formed by cleavage of 

the benzylic bond of 1 Is produced in the pyrolysis and photolysis of 10', and the pyrol­

ysis of 11'. This diradical gives rise to 1 and 4 in a ratio between 3 and 8 to 1 over a 

temperature range of 25 to 950 °C. The pyrolysis of 10' involves other major reactions. 

Mechanisms for these reactions are proposed. 

In paper 3, the FVP of bis(o-allylbenzyl) oxalate (9") at 700-900 °C gives as the 

major product 1,2-dihydronaphthalene (2). Several other minor products Including 

naphthalene (3"), indene (6"), 3-methyl-IH-indene (10"), and 2-methyl-lH-indene (11") 

are also produced. At lower temperatures the dimer of o-allylbenzyl radical (7"). 

l,2-di(2-allylphenyl)ethane (14"). is produced in low yield. These results are consistent 
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with the production of radical 7" as an intermediate in the FVP of 9". Formation of the 

major product 2 is readily explained by closure of 7" to 2-tetryl radical (16") followed by 

loss of a J3 hydrogen atom. 

Paper 4 describes the FVP of 1,4-diphenylbutane (9'") (700-900 °C, 10'^ torr) 

produces 1,2-diphenylethane (10"') in high yield. At higher temperatures, ca. 10% 

toluene (11"') and small amounts (<2.5%) of indan (12'"), styrene (13'"), ethylbenzene 

(14'"), allylbenzene (15"'), butylbenzene (19"'), and diphenylmethane (20'") are also 

produced. Formation of the benzyl radical coupling product 10'" as the major product 

is consistent with Initial cleavage of the benzylic carbon-carbon bond of 9'" to form a 

benzyl radical and 3-phenylpropyl radical (8'"), followed by the loss of ethylene from 8"' 

to produce another benzyl radical. Formation of 8'" is supported by the detection of 

indan (12'") as a minor product. The results show that the major reaction of 8'" in the 

gas-phase is J3 carbon-carbon bond cleavage to produce ethylene and benzyl radical: the 

loss of a J3 hydrogen to form allylbenzene (15'") and cyclization to indan (12'") are 

minor reactions under these conditions. Formation of the minor products toluene 

(11'"), styrene (13'"), ethylbenzene (14'"), butylbenzene (19'"), and diphenylmethane 

(20'") at higher temperatures indicates that some induced decomposition of 9 " is 

occurring. 

In paper 5, the FVP of o-allyltoluene (4) at 700 °C and 800 °C gives as the major 

product 2-methyllndan (7). At 900 °C, 7 is still produced but the major product is indene 

(8). It is proposed that 7 is produced by a two-step mechanism involving 1,5-diradical 

15"" formed by an intramolecular hydrogen atom transfer. Conversion of 7 to indene 

4 15"" 7 
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(8) at higher temperatures is explained by the loss of a methyl group from 7 to form the 

2-indanyl radical which would readily lose a J3 hydrogen atom to give 8. The calculated 

AH° for this reaction is 45 kcal mol'^. We have also pyrolyzed o-(3-butenyl)toluene (9""). 

which undergoes homolytic bond cleavage, and o-(4-pentenyl)toluene (10""), which 

forms o-methylstyrene (14"") through a retro-ene reaction. From the AH* of these 

reactions, we estimate the AH* for the 4 to 7 conversion is 65 kcal mol'^. 

In this dissertation, a clearer understanding of the high temperature gas-phase 

chemistry of tetralin has resulted from our decomposition studies of the simplest 

hydroaromatic compound and related model systems. We have demonstrated that the 

lowest energy unimolecular decomposition reaction of tetralin is ethylene loss and that 

a facile bimolecular dehydrogenation reaction occurs under some conditions. We have 

found no evidence of heterogeneous surface reactions in the gas-phase decomposition of 

tetralin. The decomposition of model systems designed to probe the pathways involved in 

tetralin decomposition has resulted in a greater understanding of the mechanism of 

tetralin decomposition and has suggested avenues for further research. 
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